

D5.1: Common optimisation protocol

Authors:
Michael Strauch (UFZ), Christoph Schürz (UFZ)

Delivery Date: 31. May 2024

 This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under

Grant agreement No. 862756.

OPTAIN D5.1 Common optimisation protocol 2 / 53

Disclaimer
This document reflects only the author’s view. The European Commission is
not responsible for any use that may be made of the information it contains.

Intellectual Property Rights
© 2024, OPTAIN Consortium

All rights reserved.

This document contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material
and of the work of others has been made through appropriate citation,
quotation, or both.

This document is the property of the OPTAIN Consortium members. No
copying or distributing in any form or by any means is allowed without the
prior written agreement of the owner of the property rights. In addition to
such written permission, the source must be clearly referenced.

Project Consortium

OPTAIN D5.1 Common optimisation protocol 3 / 53

Document Information
Program EU Horizon 2020 Research and Innovation Action

H2020-EU.3.2.1.1 (SFS-23-2019)
Grant agreement No. 862756
Project acronym OPTAIN
Project full name Optimal strategies to retain and re-use water and nutrients in

small agricultural catchments across different soil-climatic
regions in Europe

Start of the project September 2020
Duration 66 months
Project coordination Prof. Dr. Martin Volk

Helmholtz-Centre for Environmental Research GmbH - UFZ
www.optain.eu

Deliverable D5.1: Common optimisation protocol
The main objective of OPTAIN’s task 5.1 was to enable catchment-
scale modellers to run a multi-objective optimisation of the
allocation and combination of Natural/Small Water Retention
Measures (NSWRM) in their own case study. This report (i)
introduces the Pareto optimal NSWRM implementation plans as
one of the project’s key products, (ii) describes OPTAIN’s
optimisation concept, (iii) outlines the requirements that a SWAT+
model setup must meet before it can be used for the optimisation,
(iv) shows how to build a SWATmeasR project as a key tool for
implementing NSWRM in a SWAT+ model, and (v) provides a
protocol on how to run the optimisation using the software
CoMOLA.

Work package WP5: Optimisation of NSWRM plans
Task Task 5.1: Empower cases studies with spatial optimisation skills
Lead beneficiary Helmholtz Centre for Environmental Research GmbH - UFZ
Author(s) Michael Strauch (UFZ), Christoph Schürz (UFZ)
Contributor(s)
Quality check Felix Witing (UFZ), Martin Volk (UFZ)
Planned delivery date Month 45 (May 2024)
Actual delivery date 31/05/2024
Citation Strauch, M., Schürz, C. (2024): Common optimisation protocol.

Deliverable D4.5 EU Horizon 2020 OPTAIN Project, Grant
agreement No. 862756

Dissemination level* PU
*PU = Public; PP = Restricted to other program participants (including the Commission Services; CO =
Confidential, only for members of the consortium (including the Commission Services).

http://www.optain.eu/

OPTAIN D5.1 Common optimisation protocol 4 / 53

Deliverable status
Version Date Author(s)/Contributor(s) Notes
0.5 07.05.2024 Michael Strauch (UFZ),

Christoph Schürz (UFZ),
Felix Witing (UFZ)

Optimisation workshop for OPTAIN CS
SWAT+ modellers in Leipzig & first draft of
optimisation protocol.

0.8 27.05.2024 Michael Strauch (UFZ),
Christoph Schürz (UFZ)

First complete draft

0.9 30.05.2024 Felix Witing (UFZ),
Martin Volk (UFZ)

Revision

1.0 31.05.2024 Michael Strauch (UFZ),
Christoph Schürz (UFZ)

Final

OPTAIN D5.1 Common optimisation protocol 5 / 53

Summary
The objective of this deliverable D5.1 is to enable catchment-scale modellers to
perform a multi-objective optimisation of the allocation and combination of
Natural/Small Water Retention Measures (NSWRMs) in their own case study (CS).

This report (i) introduces the Pareto optimal NSWRM implementation plans as one
of the project’s key products, (ii) describes OPTAIN’s optimisation concept, (iii)
outlines the requirements that a SWAT+ model setup must meet before it can be
used for the optimisation, (iv) shows how to build a SWATmeasR project as a key
tool for implementing NSWRMs in a SWAT+ model, and (v) provides a protocol on
how to run the optimisation using the software CoMOLA.

The report should also be useful beyond the OPTAIN project for interested SWAT+
modellers who wish to use their model to optimise spatially explicit NSWRM or Best
Management Practice (BMP) plans against multiple catchment-scale objectives.

OPTAIN D5.1 Common optimisation protocol 6 / 53

Table of Contents
Summary .. 5

Abbreviation list .. 7

1. Introduction ... 8

 Objective ... 8

2. OPTAIN’s optimisation concept .. 9

 Definition of optimisation objectives ... 10

 Definition of the decision space .. 11

 Functions evaluating the objectives ... 11

 Multi-objective optimisation algorithm ... 12

3. SWAT+ model preparation ... 14

 Basic SWAT+ model configuration .. 14

 Building a SWATmeasR project .. 15

 General SWATmeasR workflow ... 15

 Initialising a new SWATmeasR project ...17

 General structure of a SWATmeasR project ... 18

 NSWRM definition .. 24

 Definition of NSWRM locations ... 32

 NSWRM implementation ... 33

4. Running the optimisation ... 36

 python installation... 36

 miniconda installation ... 36

 miniconda setup ... 38

 CoMOLA file structure .. 41

 Setting up and starting an optimisation run.. 42

 Add your own txt folder .. 43

 Adjust the SWAT.R script ... 43

 Configure the master file (config.ini) .. 47

 Starting the optimisation (run_comola.bat) .. 48

 Analysis of results ... 49

5. References .. 52

OPTAIN D5.1 Common optimisation protocol 7 / 53

Abbreviation list

BMP Best Management Practice

COCOA Contiguous Object COnnectivity Approach

CoMOLA Constrained Multi-objective Optimisation of Land use Allocation

CS Case Study

EPI Environmental Performance Indicator

HRUs Hydrologic Response Units

MARG Multi-Actor Reference Group

NSWRMs Natural/Small Water Retention Measures

OPTAIN OPTimal strategies to retAIN and re-use water and nutrients in small
 agricultural catchments across different soil-climatic regions in
 Europe

SPI Socio-economic Performance Indicator

SWAT Soil and Water Assessment Tool

SWAT+ Soil and Water Assessment Tool Plus

TN Total Nitrogen

TP Total Phosphorus

WP Work Package

OPTAIN D5.1 Common optimisation protocol 8 / 53

1. Introduction
 Objective

The objective of Task 5.1 of the OPTAIN project is to explore where to implement
which measure(s) within each of the case studies in order to best possible meet
various environmental and socio-economic objectives. Based on previous Multi-
Actor Reference Group (MARG) workshops, we have learned which water and
nutrient retention problems are most relevant in the different case studies and
have identified a number of promising Natural/Small Water Retention Measures
(NSWRMs) that we can model at individual sites using the SWAT+ model in
combination with the Contiguous Object COnnectivity Approach (COCOA)
developed in this project (Schürz et al., 2022). We have run a set of model scenarios,
where we evaluated the effectiveness of individual NSWRMs, considering all sites
where the implementation appeared reasonable (Piniewski et al., 2024). The
evaluation was based on a wide range of environmental performance indicators
(EPIs) relating to water and nutrient retention and crop yield. We also developed
and applied functions to calculate a number of socio-economic performance
indicators - SPIs (such as agricultural gross margin and implementation costs),
which are described in detail in deliverable D2.2 (Krzeminska & Monaco, 2022) and
in the forthcoming deliverable D4.5 (‘Attractiveness and socio-economic
assessment of NSWRMs’). What is still missing, and will be addressed in WP 5, is an
integrative assessment (a cost-benefit analysis) that takes into account both the
most relevant EPIs and the most relevant SPIs, while at the same time allowing for
any individual allocation and combination of the NSWRMs at hand. In a particular
location within the catchment, some NSWRMs may be more efficient at retaining
water and nutrients than others. At other sites, a combination of different NSWRMs
may be most effective. Any NSWRM implementation is likely to involve trade-offs
(e.g. with agricultural production and implementation costs), and local site-level
effects may not translate linearly to the catchment level. Given the large number of
possible implementation sites for the set of different NSWRMs (~3-6 depending on
the case study), there could be millions of different combinations (hereafter
referred to as ‘NSWRM plans’), each with different environmental and socio-
economic performance.

In order to explore the best possible NSWRM plans for different, sometimes
conflicting objectives, the SWAT+ models built in each case study need to be
coupled with an efficient search algorithm. In OPTAIN, we use the Non-dominated
Sorting Genetic Algorithm II (NSGA-II), a widely used Pareto-based optimisation
algorithm (Deb et al., 2002), which is embedded in the Constrained Multi-objective
Optimisation of Land use Allocation (CoMOLA) tool, developed at UFZ (Strauch et
al., 2019). The result of such a search is not a single optimal NSWRM plan, but a large
number of Pareto optimal solutions (Figure 1.1). Pareto optimal solutions are
solutions for which no objective can be further improved without compromising at
least one of the other objectives. From such a set of best alternatives (with minimal
trade-offs between the objectives), decision makers can discuss and select
appropriate solutions according to their preferences (Cord et al., 2017, Kaim et al.,

OPTAIN D5.1 Common optimisation protocol 9 / 53

2020). In a later task of work package (WP) 5, each case study will conduct such a
preference analysis with its MARG (Task 5.4). The ultimate goal of this Task 5.1 is to
enable CS modellers to conduct their own multi-objective optimisation of NSWRM
plans. As a result, each case study should be able to run its SWAT+ model within
CoMOLA to identify NSWRM plans that are close to Pareto optimality. The following
chapters were discussed at a 3-day workshop with the OPTAIN CS modellers and
(partially) applied in practice.

Figure 1.1: Schematic illustration of Pareto optimal NSWRM implementation plans

2. OPTAIN’s optimisation concept
Multi-objective optimisation of management options requires four components,
regardless of its purpose:

(1) The definition of optimization objectives,

OPTAIN D5.1 Common optimisation protocol 10 / 53

(2) the definition of the decision space,
(3) functions evaluating the objectives based on the decisions, and
(4) a multi-objective optimisation algorithm.

In the following, we briefly describe how these components are defined in OPTAIN
to optimise NSWRM plans.

 Definition of optimisation objectives
First and foremost, we have to define the objectives (or goals) for which the NSWRM
plans are to be optimised. OPTAIN’s WP2 defined a number of different
environmental and socio-economic performance indicators (EPIs/SPIs) that could
be used as optimisation objectives. The multi-objective optimisation algorithm
implemented in CoMOLA (NSGA-II) can handle up to four objectives. Ideally,
NSWRM plans should solve or minimise the most relevant water and nutrient
related problem(s) of the case study at minimum cost to farmers and society.
Therefore, the set of optimisation objectives should consist of the following
indicators:

(1) One EPI that is addressing the most relevant water related problem (e.g. soil
water content or a river discharge indicator for a specific period within the
year),

(2) Another EPI that is addressing the most relevant nutrient related problem
(e.g. nitrogen, phosphorus or sediment concentrations or loads at the
catchment outlet). If there is no nutrient related problem in the case study
or if SWAT+ has not been calibrated for nutrients, a second water related EPI
could be selected.

(3) One SPI that is indicating the catchment’s agricultural production (e.g. the
sum of all crop-specific yields expressed as grain units or the agricultural
gross margin).

(4) Another SPI that is referring to implementation and maintenance costs of
NSWRMs, with or without considering subsidies. Agricultural production,
NSWRM costs and subsidies can also be combined in one indicator if
appropriate. This would leave room for one more indicator to be considered
as optimisation objective

It is also possible to integrate several indicators into one objective function. For
example, if total nitrogen (TN) and total phosphorus (TP) loads were to be used
together as one water quality objective, TN and TP loads could simply be summed.
However, as TN loads are naturally higher than TP loads, TN loads would be over-
emphasised. Appropriate weighting may therefore be required. The definition of
performance indicators as optimisation objectives is a crucial step for each case
study. Section 4.3 shows in more detail how to define the objectives within the
CoMOLA workflow.

OPTAIN D5.1 Common optimisation protocol 11 / 53

 Definition of the decision space
The decisions that can be made when optimising NSWRM plans are obvious: which
individual NSWRM (type and location) are implemented simultaneously in the
catchment. In collaboration with local stakeholders, each case study has defined its
own types of NSWRMs and, for each type, all the potential sites where
implementation could make sense. Each decision where to implement a certain
type of NSWRMs may result in a different achievement of the objectives defined
above. NSGA-II is a genetic optimisation algorithm. Catchment-wide NSWRM plans
must therefore be encoded as a genome. A genome is a string of genes expressed
as integers. In our optimisation, each gene refers to an individual NSWRM type at a
particular location within the catchment, where the integer value of each gene can
be either 1 (NSWRM is not implemented) or 2 (NSWRM is implemented). Figure 2.1
illustrates the encoding of NSWRM plans as genomes.

Figure 2.1: Encoding NSWRM plans as genomes

The SWAT+ model will be used to evaluate the performance (fitness) of individual
NSWRM plans proposed by NSGA-II. It is therefore necessary that SWAT+ model
input files, representing individual NSWRM at specific locations, can be written
according to the genome in an automated workflow within the optimisation. This
is achieved using the SWATmeasR R package
(https://git.ufz.de/schuerz/swatmeasr), which is described in more detail in Section
3.2.

 Functions evaluating the objectives
In OPTAIN, the environmental optimisation objectives will be calculated by running
SWAT+ and postprocessing its output using a set of R scripts (see Section 4.3). The
most challenging part of the optimisation is to provide a SWAT+ model that meets
a number of requirements, which are explained in more detail in Section 3.1.

OPTAIN D5.1 Optimisation Protocol 12 / 53

The calculation of the socio-economic optimisation objectives is based on selected
input files (e.g. parameterization of the agricultural management) and output files
(e.g. crop yield simulations) of the SWAT+ model, as well as a set of CS-specific
economic parameters. In practice, the calculation of the SPIs is also done using an
R script in the postprocessing of a SWAT+ run. Details on the calculation of the
socio-economic optimisation objectives are described in OPTAIN’s in deliverables
D2.2 and D4.5.

 Multi-objective optimisation algorithm
Multi-objective optimisation algorithms are increasingly used for land use
allocation problems in agricultural landscapes, as they are able to approximate
Pareto optimal solutions from a large number of possible land use/land
management configurations (Kaim et al., 2018; Memmah et al., 2015). OPTAIN uses
NSGA-II (Deb et al., 2002), a popular multi-objective genetic algorithm included in
the CoMOLA software. The step-by-step process of this algorithm is as follows (see
also Figure 2.2):

Step 1: Initialization

Generate Initial Population: Create an initial population P0 of N individuals (i.e.
individual NSWRM plans) randomly within the feasible1 solution space. Population
size N is an important parameter to be adjusted by case studies (section 4.3).

Evaluate Population: Calculate the fitness values of each individual based on the
objective functions. In other words, run SWAT+ for each NSWRM plan of the initial
population and calculate the value of the optimisation objectives based on the
SWAT+ outputs and the socio-economic parameters (section 2.1).

Step 2: Non-dominated Sorting

Rank Individuals: Sort the population into different fronts using non-dominated2
sorting. Front F1 consists of non-dominated individuals, F2 consists of individuals
dominated only by those in F1, and so on.

 Crowding Distance Assignment: Calculate the crowding distance3 for each
individual in the population. This metric helps maintain diversity by favouring
individuals in less crowded regions of the solution space.

1 In OPTAIN, maximum implementation scenarios of single NSWRM have been co-created
with local stakeholders. We therefore assume that all possible NSWRM plans are feasible,
although some NSWRM combinations may in fact be unrealistic. Feasibility of NSWRM
combinations will be addressed at a later stage when preferred solutions are identified with
local stakeholders from the final set of Pareto optimal NSWRM plans. By assuming feasibility
of all NSWRM plans during the optimisation, computationally intensive constraint handling
is avoided.
2 An individual A dominates another individual B if A is no worse than B in all objectives and
better in at least one objective.
3 For each individual, the crowding distance is calculated based on the average distance of
the two neighbouring individuals on either side along each objective. This distance
measures how close an individual is to its neighbours.

OPTAIN D5.1 Common optimisation protocol 13 / 53

Step 3: Selection

Tournament Selection: Use binary tournament selection based on rank and
crowding distance to select parent individuals for the next generation. An
individual with a lower rank is preferred, and if ranks are equal, the one with a
higher crowding distance is preferred.

Step 4: Create and Evaluate Offspring Population

The offspring population Qt of size N is generated using crossover and mutation
from the selected parents.

Crossover: Apply crossover (recombination) operators to selected parents to
generate offspring. Common crossover methods include single-point, multi-point,
and simulated binary crossover (SBX).

Mutation: Apply mutation operators to offspring to introduce variability. This can
involve bit-flip mutations for binary representations or polynomial mutations for
real-valued representations.

Evaluate Offspring Population: Calculate the fitness values of each individual based
on the objective functions. In other words, run SWAT+ for each NSWRM plan of the
offspring population and calculate the value of the optimisation objectives based
on the SWAT+ outputs and the socio-economic parameters (section 2.1).

Step 5: Combine Populations

Combine the parent population Pt and offspring population Qt to form a combined
population Rt of size 2N.

Step 6: Non-dominated Sorting of Combined Population

Perform non-dominated sorting on the combined population Rt to identify the
different fronts F1, F2, …

Step 7: Selection of New Population

Start with an empty new population Pt+1. Add individuals from each front Fi to Pt+1
until the population size exceeds N.

If adding all individuals from front Fi causes the population size to exceed N, sort
the individuals in Fi by their crowding distance in descending order and select the
top individuals to fill the population up to size N.

Step 8: Loop Until Termination

Repeat the process from step 3 to step 7 for a predefined number of generations or
until a convergence criterion is met. In OPTAIN, case studies need to define the
number of generations (section 4.3). The core principles of this loop are shown in
Figure 2.2.

OPTAIN D5.1 Common optimisation protocol 14 / 53

Figure 2.2 (source: Jiang et al., 2021): Core principles of the NSGA-II: Apply non-dominated
sorting to the combined (parent and offspring) population. If necessary, use crowding
distance to cut off the sorted combined population to population size N (forming the new
parent population). Apply tournament selection, crossover and mutation to the new
parents to form a new offspring population and calculate its fitness values. The procedure
is repeated until a termination criterion is met.

3. SWAT+ model preparation
 Basic SWAT+ model configuration

All SWAT+ modelling tasks in OPTAIN strongly build on the preceding steps in the
modelling workflow. This is particularly true for the NSWRM implementation in the
SWAT+ model setups and eventually for the optimization of NSWRM combinations.
Based on the decisions made for a SWAT+ model setup in OPTAIN the R package
SWATmeasR has been developed to enable an automatable approach for the
implementation of NSWRMs in SWAT+ model setups. The conceptual approach on
how specific NSWRMs are represented in SWAT+ model setups has been defined
by Marval et al. (2022). To enable the implementation of structural NSWRMs in
particular, the SWAT+ model setups are required to represent a great detail of
connection of water and nutrient fluxes in the landscape. In OPTAIN we therefore
developed the contiguous object connectivity approach (COCOA) and
implemented this concept in the newly developed SWAT+ model builder
SWATbuildR (Schürz, 2024a) which must be used by every OPTAIN case study to
set up their SWAT+ models. Farm management operation schedules were
implemented in every case study model setup with the use of the R package
SWATfarmR (Schürz, 2024b). In order to analyse the effects of management-related
NSWRMs, different management plans were set up for each field unit in a model

OPTAIN D5.1 Common optimisation protocol 15 / 53

that represents the status quo and a possible scenario. For an analysis, the
individual management schedules must be interchangeable to switch between
them.

Only SWAT+ model setups that follow the OPTAIN model setup guidelines can use
the full functionality for the implementation of NSWRMs with SWATmeasR which
is documented below. A detailed guideline on the required model setup procedure
is documented in Schürz et al. (2022). Nevertheless, SWAT+ model setups created
with different approaches (e.g. using QSWAT+) can use a limited set of NSWRM
types to be implemented with SWATmeasR. The implementation of land use
change type NSWRMs (such as any greening measure or afforestation) does not
necessarily require any specific configuration of the model’s land object
connectivity. Also, the addition of wetland water storages to HRUs can be done with
SWATmeasR independent of the land object connectivity (if water routing of a land
object is not changed). The implementation of structural measures, such as ponds,
utilises the COCOA approach when implemented in a model setup and therefore
requires the SWAT+ model to be built with SWATbuildR. The implementation of
farm management related NSWRMs rely on SWATfarmR projects in the current
form of SWATmeasR. However, this can be generalised to the use of
management.sch input files in a later version of SWATmeasR.

 Building a SWATmeasR project
SWATmeasR is an R package (https://git.ufz.de/schuerz/swatmeasr) for a fast and
easy implementation of NSWRMs in SWAT+ model setups. SWATmeasR enables
the implementation of selected NSWRMs, such as land use change, changes in the
farm management, or structural measures such as ponds and wetlands. With
SWATmeasR, NSWRMs are defined by specific parameters and their “locations” in
a model setup. All defined NSWRMs can be easily combined and implemented in
the corresponding SWAT+ model setup.

 General SWATmeasR workflow

The SWATmeasR workflow can be separated into two major parts, the setup of a
SWATmeasR project and the implementation of NSWRMs with an existing
SWATmeasR project. Figure 3.1 provides a general overview of the workflows in the
setup and the implementation phase.

The setup of a SWATmeasR project involves three steps: (i) the initialization of a new
SWATmeasR project with the function new_measr(), (ii) loading the definitions
(parameterizations) of all NSWRMs that should be implemented in the model setup
with measr_project$load_nswrm_definition() and (iii) the definition of the
locations of all NSWRMs that should be implemented with
measr_project$load_nswrm_location().

The NSWRM implementation is exemplary illustrated in Figure 3.1 for the
implementation of measures in the CoMOLA workflow. However, the NSWRM
implementation procedure is the same in any modelling workflow in which the
effects of NSWRMs are to be simulated. NSWRMs are implemented in the SWAT+

OPTAIN D5.1 Common optimisation protocol 16 / 53

model with the function measr_project$implement_nswrm(), which implements
the selected NSWRMs in the SWAT+ input tables in R. To write the changes in the
SWAT+ text input files into the SWAT+ project folder, the function
measr_project$write_swat_inputs() must be called. Once the NSWRMs have
been implemented, model simulations are carried out and the results are analysed
to examine the effects of the implemented NSWRMs. The initial state of the SWAT+
text input files in the project folder and in the corresponding tables in R is restored
by calling the function measr_project$reset().

Figure 3.1: Overview of the SWATmeasR workflow.

OPTAIN D5.1 Common optimisation protocol 17 / 53

 Initialising a new SWATmeasR project

SWATmeasR is based on the R6 object class (Chang, 2022), which is an
implementation of object-oriented programming in R. In simple words, R6 objects
can contain data and functions which, when executed, can modify the data stored
in the object. The following code generates a new SWATmeasR project that creates
such an object in R, which stores data and provides functions to apply to the stored
data.

new_measr(project_name = ‘measr_project’,
 project_path = ‘Path:/to/your/SWAT/txt/folder’)

The function new_measr() initialises a new SWATmeasR project (in the following
simply called measr project) with the name that was provided by the input
argument project_name. The input argument project_path defines the path of
the SWAT+ project folder on the hard drive for which the new SWATmeasR project
should be generated. The initialization of the new SWATmeasR project reads all
relevant input text files from the SWAT+ project folder in project_path and stores
them in an object with the project_name in the R environment. Additionally to the
SWAT+ input tables, the new SWATmeasR provides a set of functions that will be
used later to e.g. load additional data or implement NSWRMs. At the same time
when the R object is generated, a *.measr file with the name “project_name.measr”
is saved in the SWAT+ project folder. It contains the same data as the object in the
R environment and is essentially a backup of the project in R, which can be loaded
into R with the function load_measr(). Each time the SWATmeasR project is
modified in R, also the *.measr file on the hard drive is written and updated.

In the example in Figure 3.2, a SWATmeasR project was initialised with the
project_name = “schoeps_240502”. When calling the function new_measr() it
prints that the SWAT+ input files were read from the SWAT+ project folder defined
by project_path (Figure 3.2a). Figure 3.2 a) also shows the list of SWAT+ input
tables, which were read and saved in the new R object schoeps_240502. The new
SWATmeasR project is present in the R environment (Figure 3.2b) and a file with
the name “schoeps_240502.measr” was written into the SWAT+ project folder
(Figure 3.2c).

OPTAIN D5.1 Common optimisation protocol 18 / 53

Figure 3.2: The SWATmeasR project with the project_name = ‘schoeps_240502’, which was
generated with the function new_measr()(a). The new measr_project is available as an
object in the R environment (b), and as a *.measr file in the SWAT+ project folder (c).

 General structure of a SWATmeasR project

The initialised SWATmeasR project is an object in R that can be handled similarly
to lists in R. In simple terms, it is an object with several elements that can be
accessed with the $ operator, just like lists in R. The major difference to lists is that
the SWATmeasR project also contains functions that affect the internal data
elements (functional programming). In the following, the general structure of a
SWATmeasR project is outlined. Most of the elements may not be directly relevant
for all SWATmeasR users. Nevertheless, it can be helpful when identifying problems
or customising the content of a SWATmeasR project if you know where to find
what.

Functions and .data

The example in Figure 3.3 shows the initialised project schoeps_240502. The $
operator can be used to access the elements of schoeps_240502 and all the
functions available in the SWATmeasR project become visible:

- .$reset resets the SWATmeasR project and the corresponding SWAT+
project folder to its initial condition if NSWRMs were implemented before
with .$implement_nswrm and .$write_swat_inputs.

OPTAIN D5.1 Common optimisation protocol 19 / 53

- .$save is usually triggered internally by the other functions and will save the
current state of the R object to the *.measr file in the SWAT+ project folder.
This can be useful if, for example, elements in the SWATmeasR project were
adjusted manually.

- $write_swat_inputs writes the modified SWAT+ input files into the SWAT+
project folder after NSWRMs were implemented with .$implement_nswrm.

- .$reload_swat_inputs reloads all SWAT+ input files. This may be necessary
if e.g. entries in the SWAT+ input files were missing but are required for the
implementation of specific NSWRMs.

- .$implement_nswrm implements NSWRMs in the SWAT+ input files in the
SWATmeasR object in R (not in the SWAT+ project folder!).

- .$load_nswrm_location is used to load the NSWRM locations input file into
the SWATmeasR project in R.

- .$load_nswrm_definition is used to load an NSWRM definition input file
into the SWATmeasR project in R.

- .$initialize is the synonymous function to new_measr() and should not
be called from the SWATmeasR project.

- .$.__enclos_env__ is some R6 specific argument and is not relevant for
the SWATmeasR user.

- .$.data stores all data of a SWATmeasR project including all SWAT+input
tables and the NSWRM definitions.

Figure 3.3: Overview of the elements of a newly initialised SWATmeasR project.

Meta information:

A SWATmeasR project stores some meta information about the project. The meta
information can be accessed as follows:

> schoeps_240502$.data$meta

#> $project_name
#> [1] "schoeps_240502"
#>

OPTAIN D5.1 Common optimisation protocol 20 / 53

#> $project_path
#> [1] "C:/Users/schuerz/Documents/optain/swat/240322_txt"
#>
#> $measr_version
#> [1] "0.8.0"

The element .$.data$meta returns the project_name, so the name of the
SWATmeasR project in the R environment and on the hard drive, the project_path,
which is the path from where the SWATmeasR project was loaded (if the project
folder was moved before loading the project, this path will also be different), and
the version of the SWATmeasR project, which is the R package version of
SWATmeasR that was used to build the SWATmeasR project. It is always
recommended that the SWATmeasR version of the project and the current version
of the R package match.

Model input tables

The SWAT+ model input files, which were read and saved in the SWATmeasR R
object, can be found in .$data$model_setup. Two copies of the relevant SWAT+
input files are saved in a SWATmeasR project, the unmodified input files stored in
.$data$model_setup$original_inputs and the input files that will be modified
when implementing NSWRMs stored in .$data$model_setup$modified_inputs.
After the initialisation, the original_inputs and the modified_inputs are
identical. Table 3.1 summarises the SWAT+ input tables that are read and stored in
a SWATmeasR project.

Table 3.1: Summary of the SWAT+ input tables that are stored in a SWATmeasR project.

File name R table name Definition

object.cnt object.cnt Counts of spatial objects in model setup

landuse.lum landuse.lum Main land use information file, reference to
land use parameter input files

cntable.lum cntable.lum Curve numbers for different land use types

cons_practice.lum cons_practice.lum USLE P and slope lengths for cons. practices

ovn_table.lum ovn_table.lum Overland Manning's n values for different
tillage and land cover types

management.sch management.sch Management operations schedules file

plant.ini plant.ini Plant community input file

hru-data.hru hru_data.hru Main HRU input file, which points to HRU
parameter input files

hru.con hru.con HRU connectivity input file

OPTAIN D5.1 Common optimisation protocol 21 / 53

rout_unit.rtu rout_unit.rtu Main routing unit input file, which points to
routing unit parameter input files

rout_unit.con rout_unit.con Routing unit connectivity input file

rout_unit.def rout_unit.def Specification of elements in a routing unit

rout_unit.ele rout_unit.ele Lists all elements that are part of a routing unit

chandeg.con chandeg.con Channel connectivity input file

reservoir.res reservoir.res Main reservoir input file, which points to
reservoir parameter input files

hydrology.res hydrology.res Reservoir hydrology parameter input file

reservoir.con reservoir.con Reservoir connectivity input file

wetland.wet wetland.wet Main wetland input file, which points to
wetland parameter input files

hydrology.wet hydrology.wet Wetland hydrology parameter input file

sediment.res sediment.res Reservoir and wetland sediment parameters

nutrients.res nutrients.res Reservoir and wetland nutrient parameters

tiledrain.str tiledrain.str Tile drainage parameter input file

file.cio file.cio Master input file, lists used input files

res_rel.dtl res_rel.dtl_names Reservoir release operations file. SWATmeasR
project only stores entry names.

lum.dtl lum.dtl_names Management decision tables. SWATmeasR
project only stores entry names.

Not all of the listed SWAT+ input tables will be modified when NSWRMs are
implemented. Some of the input tables are read as lookup tables and to check
whether specific entries and parameterisations are defined in a model setup.

In addition to the SWAT+ inputs, .$data$model_setup$original_inputs and
.$data$model_setup$modified_inputs contain elements that track the
implementation of NSWRMs in the input tables. The element file_updated
returns a boolean vector which shows the input files that were updated through
the implementation of NSWRMs with TRUE.

> schoeps_240502$.data$model_setup$modified_inputs$file_updated
#>
#> object.cnt file.cio landuse.lum
#> FALSE FALSE FALSE
#> cntabe.lum cons_practice.lum ovn_table.lum

OPTAIN D5.1 Common optimisation protocol 22 / 53

#> FALSE FALSE FALSE
#> management.sch plant.ini hru_data.hru
#> FALSE FALSE FALSE
#> hru.con rout_unit.rtu rout_unit.con
#> FALSE FALSE FALSE
#> rout_unit.def rout_unit.ele chandeg.con
#> FALSE FALSE FALSE
#> reservoir.res hydrology.res reservoir.con
#> FALSE FALSE FALSE
#> wetland.wet hydrology.wet sediment.res
#> FALSE FALSE FALSE
#> nutrients.res res_rel.dtl_names lum.dtl_names
#> FALSE FALSE FALSE
#> tiledrain.str
#> FALSE

The element files_written returns whether or not the modified input files were
written to the SWAT+ project folder. In the example below for the initial setup of
schoeps_200502, no input files were written yet.

> schoeps_240502$.data$model_setup$modified_inputs$files_written
#>
#> [1] FALSE

If NSWRMs were implemented, the element implemented_nswrms becomes
available in .$data$model_setup$modified_inputs. implemented_nswrms is a
table which tracks the spatial objects in the SWAT+ model setup where NSWRMs
were implemented. In the example below from the SWATmeasR project
schoeps_200502, the NSWRM types grassslope, wetland and pond were
implemented in some HRUs. The table implemented_nswrms can be accessed as
follows:

>
schoeps_240502$.data$model_setup$modified_inputs$implemented_nswrm
s
#>
#> # A tibble: 12 × 5
#> nswrm obj_typ obj_id obj_typ_new obj_id_new
#> <chr> <chr> <dbl> <chr> <dbl>
#> 1 grassslope hru 1 NA NA
#> 2 grassslope hru 6 NA NA
#> 3 grassslope hru 9 NA NA
#> 4 grassslope hru 12 NA NA
#> 5 grassslope hru 15 NA NA
#> 6 grassslope hru 5 NA NA
#> 7 wetland hru 238 NA NA
#> 8 pond hru 997 res 156
#> 9 pond hru 1634 res 157

OPTAIN D5.1 Common optimisation protocol 23 / 53

#> 10 pond hru 2104 res 155
#> 11 pond hru 5087 res 158
#> 12 pond hru 5096 res 159

The column nswrm indicates the type of NSWRM which was implemented. obj_typ
and obj_id define the location where an NSWRM was implemented. NSWRMs are
currently only implemented in HRUs, but there may be options to implement
NSWRMs in other object types (e.g. channels) in the future. If the implementation
of an NSWRM changes the object type of a spatial object, this change is
documented in the columns obj_type_new and obj_id_new. In the case of a pond
implementation, the HRU land objects are replaced by reservoir objects. The new
object type in this case is therefore res. The object ids in the respective SWAT+
input files are specified by obj_id_new.

NSWRM definition

If NSWRMs have been defined for a SWATmeasR project, the element
.data$nswrm_definition becomes available. It collects all relevant input to define
the NSWRM parameters and locations of a SWATmeasR project. Most of the
elements .data$nswrm_definition are explained in more detail in the following
sections, as the availability of specific elements depends either on whether certain
NSWRMs are defined or whether a definition step has already been carried out or
not (e.g. the definition of the NSWRM locations). The only element, which is always
available is the nswrm_lookup. This provides a general overview of the NSWRMs that
were defined for the SWATmeasR project.

> schoeps_240502$.data$nswrm_definition$nswrm_lookup
#>
#> # A tibble: 8 × 2
#> type nswrm
#> <chr> <chr>
#> 1 land_use buffer
#> 2 land_use hedge
#> 3 land_use grassslope
#> 4 land_use contr_drn
#> 5 management lowtillcc
#> 6 management status_quo
#> 7 wetland wetland
#> 8 pond pond

nswrm_lookup links the general NSWRM types with the actual names of the
defined NSWRMs. This is particularly relevant for the NSWRM types land_use and
management, as the example above shows.

OPTAIN D5.1 Common optimisation protocol 24 / 53

 NSWRM definition

All NSWRMs that can potentially be implemented in a SWAT+ model setup must
be defined. The definition of NSWRMs is done with the function
.$load_nswrm_definition(). With the current SWATmeasR version 0.8.0, five
NSWRM types can be implemented. Table 3.2 summarises the NSWRM types:

Table 3.2: Overview of the NSWRM types that can be implemented with SWATmeasR.

NSWRM type Definition

management Farm related measures that cause changes in the management
schedules, e.g. conservation farming, reduced tillage, cover crops.

land_use Any land use change type measure, e.g. implementation of buffer
strips, grassed waterways, or afforestation.

wetland Transformation of a land object to a wetland by adding water storage
to the land object and optionally changing land use parameters.

constr_wetland Implementation of an in stream constructed wetland. In its function
this measure is identical to ponds and only different in its naming.

pond Replacement of a land object by a reservoir object with additional
changes in the object routing, e.g. receiving water from channels,
routing water directly to channels.

The general way of NSWRM definition is outlined in the small code example below.
The required input file, which provides all necessary parametric inputs, is provided
with the input argument file_path. To indicate which type of NSWRM is defined
the correct type must be passed with the argument type. The optional argument
overwrite gives the option to overwrite already existing NSWRM definitions of the
same type. By default overwrite = FALSE. Therefore, if for example a definition of
land use type NSWRMs already exists, but a new one should be loaded, overwrite
has to be set to overwrite = TRUE. The five possible NSWRM types require different
definition input files, which will be explained in the following.

> land_def_path <- ‘./nswrm_definition/settings_land_use.csv’
> schoeps_240502$load_nswrm_definition(
 file_path = land_def_path,
 type = ‘land_use’)

Definition of NSWRM type = ‘management’

The definition of management type NSWRMs requires that the management of the
status quo and all potential management scenarios are defined by SWATfarmR
projects, which are all located in the SWAT+ project folder. Figure 3.4 shows an
example of two .farm files of the status quo (farmR_sq_15yr.farm) and one scenario
(lowtillcc.farm). The example shows the .farm files only. For retrieving the scheduled
operations, also the .mgts files for the SWATfarmR projects are required to be

OPTAIN D5.1 Common optimisation protocol 25 / 53

present in the project folder. It is very important at this stage, that the SWATfarmR
projects include the current version of the SWAT+ project and no modifications
were made to input files which are relevant for management operation scheduling
(e.g. hru-data.hru, landuse.lum, plant.ini, or management.sch). If any of the files in
the SWAT+ project have been updated after the generation of the SWATfarmR
projects, those changes will not be present in the SWATfarmR projects and will
eventually be missing in the SWATmeasR project.

Figure 3.4: SWATfarmR projects located in the SWAT+ project folder.

The input file required to define management type NSWRMs is prepared with the
function prepare_management_scenario_inputs(), which uses the available
SWATfarmR projects. The function performs multiple checks on the provided
SWATfarmR projects, such as if all cover the same time period in scheduled
operations, or if all schedule names given in the status quo are also available in all
scenarios. When processing the management schedules from the SWATfarmR
projects, prepare_management_scenario_inputs()also compares whether
scheduled operations in the status quo are considered to be the same operation in
the corresponding schedule in a management. If this is the case, but only the dates
between status quo and scenario differ within a time frame of +/- 21 days, the date
of the operation in the scenario is set to the date of the corresponding operation in
the status quo case. This step ensures that all matching operations are identical
and only those operations that are present in a scenario but not in the status quo
are different. An example for the implementation of
prepare_management_scenario_inputs()is given below.

> # Path to the SWAT+ project folder
> proj_path <- ‘./txtinout’
> # Name of the status quo SWATfarmR project
> statquo_name <- ‘farmR_sq_15yr’
> # If op_data3 labels in status_quo and scenarios are synonymous
> syns <- data.frame(status_quo = c('cultiv25', 'cultiv20'),
 scenario = c('fldcul12', 'fldcul12'))
> # Path to write the management definition file
> mgt_wrt_path <- ‘./nswrm_definitions’
>
> prepare_management_scenario_inputs(project_path = proj_path,
 status_quo = statquo_name,
 synonyms = syns,
 write_path = mgt_wrt_path)

OPTAIN D5.1 Common optimisation protocol 26 / 53

The input argument project_path specifies the path to the SWAT+ project folder.
To identify the SWATfarmR project, which has to be considered as the status quo
project, the argument status_quo must provide the name of the SWATfarmR
project. synonyms is an optional input argument to define operations that the date
correction routine should consider as identical operations, even though the
op_data3 labels of the operation in the status quo and in a scenario are different.
This may be the case, for example, if the tillage operation in the status quo and a
conservation tillage scenario should be on the same day, but the tillage type has
changed in the conservation tillage scenario. The write_path defines where the
management type definition file should be written to.

Once all checks on the SWATfarmR projects and the date correction of the scenario
operation schedules have been successful, the management type definition file is
written to the defined path. The returned file is an .rds file, which always has the
timestamp of its generation as a prefix, followed by the name ‘mgt_scenarios’.
Figure 3.5 shows an example of a successfully written management input file which
can then be used to load the management type NSWRM definition.

Figure 3.5: Example of a management input file, which was generated with the function
prepare_management_scenario_inputs().

The generated management input file can then be loaded into the SWATmeasR
project with the function .$load_nswrm_definition(). As shown in the example
below the file_path must be the one of the generated management .rds file and
type must be ‘management’.

> mgt_def_path <-
 ‘./nswrm_definition/20231128_1751_mgt_scenario.rds’
> schoeps_240502$load_nswrm_definition(
 file_path = mgt_def_path,
 type = ‘management’)

After loading the management definition file, the management NSWRMs are
added to the lookup table .$.data$nswrm_definition$nswrm_lookup, and the
element management is added to .$.data$nswrm_definition which stores the
management inputs for the status quo and for all scenario operation schedules. As
for the implementation of management operations not only the management
schedules in management.sch are relevant, but also the corresponding plant
communities and land use definitions, all management scenarios and the status

OPTAIN D5.1 Common optimisation protocol 27 / 53

quo provide the input files hru_data.hru, landuse.lum, management.sch, and
plant.ini.

Definition of NSWRM type = ‘land_use’

The definition of land use type NSWRMs requires the definition of their general land
use information into which the land use of a land object will be converted when the
NSWRM is implemented. The land use definitions are prepared in a *.csv file and
loaded into the SWATmeasR project with the function
.$load_nswrm_definition(). An example land use input table is shown in Table
3.3.

Table 3.3: Example land use input table for loading land use type NSWRMs into a
SWATmeasR project.

The example in Table 3.3 defines the four land use type NSWRMs buffer, hedge,
grassslope and contr_drn (controlled drainage). The labels defined in the column
nswrm will be the names of the measures in the SWATmeasR project. The columns
plnt_com to tile are the entries in the landuse.lum SWAT+ input file which are
written when a defined land use type measure is implemented in the SWAT+ model
setup. The labes in the columns are references to other SWAT+ input files, whereby,
for example, the label in the plnt_com column refers to a plant community in the
plant.ini input file or mgt refers to a management schedule in the
management.sch file. The last column lum_dtl points to entries in the lum.dtl
decision table. Each of the entries must already be defined in the respective input
files when the land use type NSWRM definition is loaded.
.$load_nswrm_definition() checks that all of the entries are already defined for
the SWAT+ model setup and returns an error if some of the land use definitions are
missing.

The example in Figure 3.6 shows the error that is returned if entries are missing in
the SWAT+ input files. The error message shows that the entry ‘wrong_com’ is not
defined in plant.ini and ‘missing_mgt’ is not defined in management.sch. The error
message provides guidance on how to proceed. To resolve the problem, the user
must add the missing entries in the respective SWAT+ input files. As mentioned
above, SWATmeasR takes a ‘snapshot’ of the SWAT+ input files when a new
SWATmeasR project is generated. To update the input tables in the SWATmeasR
project, all input files from the project folder must therefore be reloaded into the
SWATmeasR project using the function .$reload_swat_inputs(). The user can
then proceed loading the NSWRM definition file for land use.

OPTAIN D5.1 Common optimisation protocol 28 / 53

Figure 3.6: Error message when entries in SWAT+ input files are missing which were defined
in the land use type NSWRM definition file.

The example in Table 3.3 shows empty elements, for example all landuse.lum
entries for contr_drn. An empty element means that the initial value of this element
remains unchanged when implementing a land use NSWRM in an HRU. In the case
of contr_drn this would mean that all landuse.lum entries remain unchanged and
only a controlled drainage is added to the HRU. If a landuse.lum entry should be
specifically deactivated with the implementation of a land use type NSWRM, this
can be done with the label ‘null’. This is shown in Table 3.3 for the definition of
‘buffer’ where tile should be set to ‘null’ in all cases where buffer strips are
implemented.

Once the land use type NSWRM input csv file has been generated, it can be loaded
into the SWATmeasR project as shown below for the example SWATmeasR project
schoeps_240502:

> land_def_path <- ‘./nswrm_definition/settings_land_use.csv’
> schoeps_240502$load_nswrm_definition(
 file_path = land_def_path,
 type = ‘land_use’)

Definition of NSWRM type = ‘wetland’

The definition of wetlands is prepared in a *.csv input file. Table 3.4 provides an
example for a wetland input table. The definition of a wetland at least requires to
define the ID of the HRU (hru_id) to which a wetland water storage should be
added. Further, a lu_mgt entry can be defined if the wetland should have a different
land use than the initial one when the wetland is implemented. By default, the
connectivity of the land object where a wetland is implemented remains
unchanged, and water and nutrient fluxes are routed to the neighbouring objects
as initially defined. If instead water and nutrient fluxes should be routed directly to
a channel after the implementation of a wetland, the channel to which fluxes
should be routed can be defined with cha_to_id. The columns hru_ps to hru_frac
correspond to the parameter entries in the SWAT+ input file hydrology.wet, while
the columns rel to nut correspond to the columns with the same names in the
file wetland.wet, which hold pointer labels to entries in other SWAT+ input files.

OPTAIN D5.1 Common optimisation protocol 29 / 53

Table 3.4: Example wetland input table for loading wetland type NSWRMs into a
SWATmeasR project.

All columns except the hru_id are optional inputs and default values are
implemented if an entry is kept empty or if the column is not provided at all. Table
3.5 provides an overview of the optional inputs together with the default values to
which the parameters are set if they were not provided in the wetland definition
input file.

Table 3.5: Default values and definitions of wetland parameters that can be defined in the
wetland NSWRM input file.

Parameter Default value Definition

lu_mgt keep initial* Name of landuse definition in landuse.lum.

cha_to_id keep initial** Channel ID to which water and nutrient fluxes are routed.

hru_ps 0.1 Fraction of HRU area at principal spillway.

dp_ps 20.0 Average depth of water at principal spillway in mm.

hru_es 0.25 Fraction of HRU area at emergency spillway.

dp_es 100.0 Average depth of water at emergency spillway in mm.

k 0.01 Hydraulic conductivity of the wetland bottom in mm/hr.

evap 0.7 Wetland evaporation coefficient.

vol_area_co 1.0 Volume surface area coefficient for HRU impoundment.

vol_dp_a 1.0 Volume depth coefficient a for HRU impoundment.

vol_dp_b 1.0 Volume depth coefficient b for HRU impoundment.

hru_frac 0.5 Fraction of HRU that drains into wetland.

rel ‘wetland’*** Pointer to the reservoir and wetland release decision table.

sed ‘sedwet1’*** Pointer to the reservoir and wetland sediment file.

nut ‘nutwet1’*** Pointer to the reservoir and wetland nutrient file.

* keep the initial landuse.lum entry for an HRU, ** keep the initial routing of the HRU, *** set
those default values if provided in the respective input files, otherwise set ‘null’.

Once the wetland input csv file is generated, it can be loaded into the SWATmeasR
project as shown below for the example SWATmeasR project schoeps_240502:

> wetl_def_path <- ‘./nswrm_definition/settings_wetland.csv’

OPTAIN D5.1 Common optimisation protocol 30 / 53

> schoeps_240502$load_nswrm_definition(
 file_path = wetl_def_path,
 type = ‘wetland’)

Definition of NSWRM type = ‘pond’and type = ‘constr_wetland’

The definitions of ponds and constructed wetlands (constr_wetland) are prepared
in *.csv input files. Although the implementation of these two NSWRM types in a
SWAT+ model setup is identical, their definition is done in separate input files that
have the same structure. Table 3.6 provides an example for such an input table. The
definition of a pond or constr_wetland requires at least the definition of the
columns hru_id and cha_to_id. In contrast to wetlands, hru_id can include
multiple HRU IDs which are merged into one reservoir object when the NSWRM is
implemented. cha_to_id must always be a single channel ID to which the fluxes of
the new reservoir object are routed. In addition, a cha_from_id can be defined if
the new reservoir object should also receive fluxes from channel objects. In this case
also the routing of the channel objects which were defined with cha_from_id is
changed to route into the new reservoir object. This can for instance be useful if a
pond or constructed wetland is integrated into the existing channel network. The
columns area_ps to shp_co2 correspond to the parameter entries in the SWAT+
input file hydrology.res, while the columns rel to nut correspond to the columns
with the same names in the file reservoir.res, which hold pointer labels to entries in
other SWAT+ input files.

Table 3.6: Example pond or constr_wetland input table for loading pond or constr_wetland
type NSWRMs into a SWATmeasR project.

The cha_from_id, the hydrology.res, and the reservoir.res parameters are optional
inputs and default values are implemented if an entry is kept empty or if a column
is not provided at all. Table 3.7 provides an overview of the optional inputs together
with the default values to which the parameters are set if they were not provided
in the wetland definition input file. If the user provides values for the areas and
volumes of the new reservoir object, the function $load_nswrm_definition()
performs checks for the provided values. The provided areas area_ps, and area_es
must be less than the sum of the areas of the replaced HRUs, as the new water
surface cannot be larger than the replaced land surfaces. Further, area_ps must be
less then or equal to the area_es and the vol_ps must be less then or equal to the
vol_es, as the values at the emergency spillway water level cannot be less than
they would be at principal spillway water levels.

OPTAIN D5.1 Common optimisation protocol 31 / 53

Table 3.7: Default values and definitions of reservoir parameters which can be defined in the
pond and constr_wetland NSWRM input files.

Parameter Default value Definition

cha_from_id no change* Channel ID from which water and nutrient fluxes are routed
into the new reservoir object.

area_ps 0.1 Reservoir surface area at principal spillway water level in ha.

vol_ps 20.0 Reservoir volume at principal spillway water level in ha-m***.

area_es 0.25 Reservoir surface area at emergency spillway water level in
ha.

vol_es 100.0 Reservoir volume at emergency spillway water level in ha-
m***.

k 0.01 Hydraulic conductivity of the reservoir bottom in mm/hr.

evap_co 0.7 Reservoir evaporation coefficient.

shp_co1 1.0 Shape coefficient 1 for reservoirs.

shp_co2 1.0 Shape coefficient 2 for reservoirs.

rel ‘wetland’** Pointer to the reservoir and wetland release decision table.

sed ‘sedwet1’** Pointer to the reservoir and wetland sediment file.

nut ‘nutwet1’** Pointer to the reservoir and wetland nutrient file.

* keep the initial routing of the channel objects, ** set those default values if provided in the
respective input files, otherwise set ‘null’. *** ha-m (hectare * metres) is equivalent to 10,000
m³.

Once the pond or constr_wetland input csv file has been generated, it can be
loaded into the SWATmeasR project as shown below for the example SWATmeasR
project schoeps_240502:

> # In case of ponds
> pond_def_path <- ‘./nswrm_definition/settings_pond.csv’
> schoeps_240502$load_nswrm_definition(
 file_path = pond_def_path,
 type = ‘pond’)
> #
> # In case of constructed wetlands
> cwtl_def_path <- ‘./nswrm_definition/settings_constr_wetl.csv’
> schoeps_240502$load_nswrm_definition(
 file_path = cwtl_def_path,
 type = ‘constr_wetland’)

OPTAIN D5.1 Common optimisation protocol 32 / 53

 Definition of NSWRM locations

After all NSWRMs that can be implemented in a SWAT+ model setup were defined
and loaded into the SWATmeasR project, the user must define the potential
locations of the NSWRMs. The definition of the NSWRM locations is done in a *.csv
locations input file and loaded into the SWATmeasR project with the function
.$load_nswrm_location(). Table 3.8 shows an example of an NSWRM locations
input table. The input table requires the four columns id, name, nswrm, and obj_id.
id defines the ID of an NSWRM which is later used as an identifier for the
implementation of NSWRMs. name is the unique name of a measure location and
can be defined freely by the user. This column is not used at the moment. nswrm
refers to the entries in the definition files for the respective NSWRM types. The
labels of the specific NSWRMs must be used here to identify the respective
measures, for example buffer, hedge, or grassslope in the example of the
SWATmeasR project schoeps_250502 when referring to the different land use type
NSWRMs. obj_id refers to the IDs of the spatial objects (HRU IDs) in which an
NSWRM is implemented. For management and land use type NSWRMs, multiple
HRU IDs can be grouped together in one obj_id entry to define a single NSWRM
location. When such an NSWRM is implemented, the change in management or
land use is implemented in all of the defined HRUs at the same time. For wetland,
pond and constr_wetland NSWRMs the obj_id must match the respective entry in
the column hru_id in the wetland or pond (constr_wetland) definition file.

Table 3.8: Example for a NSWRM location definition table for loading measure locations into
a SWATmeasR project.

OPTAIN D5.1 Common optimisation protocol 33 / 53

Once the NSWRM location csv file is generated, it can be loaded into the
SWATmeasR project as shown below for the example SWATmeasR project
schoeps_240502. Similar to loading NSWRM definitions, the optional argument
overwrite is required in .$load_nswrm_location() to overwrite an existing
locations table if necessary.

> location_path <- ‘./nswrm_definition/nswrm_location.csv’
> schoeps_240502$load_nswrm_location(file_path = location_path)

 NSWRM implementation

Although the implementation of NSWRMs is not part of the generation of a
SWATmeasR project, it is briefly outlined here. The NSWRM implementation is part
of the SWAT+ workflow in the optimization routine, and the function calls to
implement NSWRMs and to write modified SWAT+ input tables into the SWAT+
project folder will be executed in the R script SWAT.R (see also section 4.3.2). It is,
however, good practice to perform tests with the NSWRM implementation, run
SWAT simulations and analyse the impacts of the implemented NSWRMs for
plausibility.

Once all NSWRMs and their potential locations were defined, they can be
implemented in the corresponding SWAT+ model setup. The NSWRM
implementation is always a two-stage procedure. First, the measures are
implemented in the SWAT+ input tables stored in the SWATmeasR project in
.data$model_setup$modified_inputs using the function .$implement_nswrm().
In a second step, the changed SWAT+ input files which were modified in the
SWATmeasR project are written into the SWAT+ project folder with the function
.$write_swat_inputs() and overwrite the initial input files.

The NSWRM locations are implemented by providing their id value with the
argument nswrm_id in the function .$implement_nswrm(). nswrm_id can be a
single value if only one NSWRM location should be implemented, but can also be a
vector of IDs if multiple locations should be implemented. In the code example
below, the NSWRM locations of buffer_1 to buffer_4, grassslope_2, hedge_3, and
pond_1 should be implemented, which were defined in the example in Table 3.8.
From the table we can read the IDs of those NSWRM locations, which are nswrm_id
= c(1:4, 8, 12, 19).

> schoeps_240502$implement_nswrm(swrm_id = c(1:4, 8, 12, 19))

The implementation of NSWRMs can be verified by looking into the table
implemented_nswrms, which was generated when the measures were
implemented. The table can be accessed as shown below:

OPTAIN D5.1 Common optimisation protocol 34 / 53

>
schoeps_240502$.data$model_setup$modified_inputs$implemented_nswrm
s
#>
#> # A tibble: 7 × 5
#> nswrm obj_typ obj_id obj_typ_new obj_id_new
#> <chr> <chr> <dbl> <chr> <dbl>
#> 1 buffer hru 479 NA NA
#> 2 buffer hru 710 NA NA
#> 3 buffer hru 337 NA NA
#> 4 hedge hru 122 NA NA
#> 5 hedge hru 123 NA NA
#> 6 hedge hru 124 NA NA
#> 7 pond hru 468 res 156

The table shows all HRUs where NWRMs have been implemented. A closer look
shows that the implementations of grassslope_2 (in HRU 122) and buffer_3 (in HRU
468) are missing. The reason for that is an overlap with the implementation of other
NSWRMs in the same HRUs. HRU 122 was also affected by the implementation of
hedge_3 and HRU 468 eventually was replaced by a pond, which is represented by
the reservoir 156. As the example shows, there is a specific order in which NSWRMs
are implemented between the different NSWRM types, but also within the same
type. Figure 3.7 shows the order in which the NSWRMs are implemented. The
NSWRM types are processed in the sequence management > land_use > wetland
> constr_wetland > pond. Within each NSWRM type, the measures are
implemented in the order in which they were provided in the NSWRM location
table.

OPTAIN D5.1 Common optimisation protocol 35 / 53

Figure 3.7: Order of implementation of NSWRMs.

In the illustrated example, hedge_3 is implemented in HRU 122 after the
implementation of grassslope_2 in the same HRU and therefore overrules the first
implementation. pond_1 is implemented as the last measure in the shown
sequence. It replaces the HRU 468 with a new reservoir and therefore overrules the
implementation of buffer_3 in the same HRU.

Once the NSWRM locations were implemented, the changes in the SWAT+ model
input files can be written into the SWAT+ project folder. This is done as follows:

> schoeps_240502$write_swat_inputs()

Once implemented, SWAT simulations can be executed and the simulated outputs
can be analysed to assess the impacts of the implemented NSWRMs. After finishing
the simulation, the original SWAT+ model setup can be restored with the function
.$reset(). With the reset all modified input files are overwritten by the original
input files stored in .$data$model_setup$original_inputs. It is strongly advised
to always reset the SWAT+ project setup after the simulation and analysis of results
is completed. Otherwise, there may be the risk that NSWRMs will remain in the
model input files and the generation of a new SWATmeasR project for example
would read the modified input files and would therefore start with a wrong initial
model setup.

OPTAIN D5.1 Common optimisation protocol 36 / 53

> schoeps_240502$reset()
#>
#> Resetting input files in project folder... Done!
#> Resetting tables measR project ... Done!

4. Running the optimisation
 python installation

CoMOLA is written in the script language python. Therefore, python must be
installed on the computer in order to run CoMOLA, specifically python version 3.11.x.
There are different approaches to install python, and it is very likely that a version
(or several versions) of python are already installed on the computer on which
CoMOLA is to be run. To minimise the risk of any CoMOLA/python related issues, a
clean new installation of python and required python packages is recommended.
The installation of python and required packages will be done using miniconda.
miniconda is a lightweight python package manager (a minimum version of the
well-known package manager anaconda) that allows users to easily install different
versions of python and required python packages.

 miniconda installation

Two approaches to installing miniconda are shown below, one that runs the
installation automatically via Windows powershell and the second that uses the
Windows installer. If it is OK to install the software in the computer’s default
programs folder, simply the command line approach can be used.

Installation from the command line

To run the installation from the command line, the Windows powershell must be
started. It is started by clicking on the Windows Start button, typing “cmd” and
pressing Enter (see Figure 4.1).

OPTAIN D5.1 Common optimisation protocol 37 / 53

Figure 4.1: Starting the Windows command prompt (powershell) from the Windows start
menu.

A command prompt opens after pressing enter. The miniconda installation is
executed in the command prompt by running the lines of code from the code box
below. Just copy the few lines of code into the command line. The commands will
execute the latest version of the miniconda installer. It downloads the executable
file, installs it in the default program path and deletes the installer executable file
after the installation.

curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-
x86_64.exe -o miniconda.exe
start /wait "" miniconda.exe /S
del miniconda.exe

Installation with the installer

Alternatively, the installer file can also be downloaded manually from the anaconda
website. The latest Windows installer executable file can be retrieved from
https://docs.anaconda.com/free/miniconda/. After downloading the installer, miniconda
can be installed to the desired location on the computer's hard drive.

https://docs.anaconda.com/free/miniconda/

OPTAIN D5.1 Common optimisation protocol 38 / 53

 miniconda setup

The miniconda installation includes the installation of an own prompt, which is
different to the Windows command prompt (cmd). To avoid registering the paths
of conda and python in the Windows PATHs (which may cause troubles with other
software) it is safer to work directly in the base environment of miniconda. The
miniconda prompt can be started in the same way as the Windows command
prompt, by clicking on the Windows start button but searching for the “Anaconda
Prompt (miniconda3)” (see Figure 4.2).

Figure 4.2: Starting the Anaconda Prompt (miniconda3) from the Windows start menu.

python installation and installation of required python packages

By starting the Anaconda prompt, a new command window opens which should
look similar as below (Figure 4.3). In brackets the cursor position shows (base)
before the home path, which indicates that the user is currently working in the
miniconda base environment.

Figure 4.3: The Anaconda Prompt (miniconda3) after starting.

OPTAIN D5.1 Common optimisation protocol 39 / 53

Due to the requirements of CoMOLA, the newest version of python 3.11x needs to
be installed, which at the time of writing this document was version 3.11.9. To install
specifically this python version the command below is executed in the Anaconda
prompt:

conda install python=3.11.9

Executing the install command starts the python 3.11.9 installation, which should
look similar to the screenshot below (Figure 4.4).

Figure 4.4: The python installation process in the Anaconda Prompt (miniconda3).

During the installation process, you will be prompted to downgrade all previously
installed python packages to the version 3.11 (which is not the latest python version).
Pressing enter will continue the installation process.

CoMOLA depends on the python package numpy. numpy is not installed by default
with the miniconda installation. python packages can be installed with the
command conda install. The numpy installation is done by executing the code in
the code box below in the Anaconda prompt. Again, the installation process will ask
to proceed. Pressing enter continues the installation process.

conda install numpy

Checking the python and numpy installation

To start CoMOLA, the path to the correct python executable file (with the version
3.11.x) must be specified in the input file config.ini (see section 4.2). The path to the
current python executable can be found with the command where in the
Anaconda prompt (see example in Figure 4.5).

OPTAIN D5.1 Common optimisation protocol 40 / 53

where python

Figure 4.5: The python executable path is returned with the command where.

The python version can be checked as follows. If the installation was successful the
python version 3.11.9 is shown (example in Figure 4.6).

python --version

Figure 4.6: Checking the version of the python executable.

Checking if numpy is installed can be done with the command conda list. The
checking for numpy is performed as follows. A list of numpy related packages should
be returned (see example in Figure 4.7).

conda list numpy

Figure 4.7: Listing all numpy packages with the command conda list.

OPTAIN D5.1 Common optimisation protocol 41 / 53

 CoMOLA file structure
After successfully installing python, the CoMOLA optimisation software is to be
downloaded from GitHub (https://github.com/michstrauch/CoMOLA_SWATplus)
or the UFZ GitLab: https://git.ufz.de/optain/wp5-optimisation/comola. This section
briefly describes the different folders and files of CoMOLA. Section 4.3 provides a
detailed manual on how to set up and run the optimisation for a user-specific case
study. The most important rule when using CoMOLA is not to change its file
structure, including all file names (Figure 4.8).

Figure 4.8: CoMOLA file structure. Files in red fonts need to be added, replaced or adjusted
by case studies.

The folder input contains two files that are automatically written when the
optimisation is started. Users should not edit these files. file_HRU.csv specifies a
vector of NSWRM sites to be included in the optimisation and the state of
implementation at the start of the optimisation process. The vector represents the
genome of the starting individual (i.e. individual 1 in the initial population) and by
default contains the value of 1 for all genes (i.e. no NSWRM are implemented). The
file worst_fitness_values.txt defines the fitness values to be used for infeasible
individuals (individuals that violate certain constraints). Since we do not define any
optimisation constraints in OPTAIN, this file is actually obsolete. However, the
current version of CoMOLA requires such a file.

https://git.ufz.de/optain/wp5-optimisation/comola

OPTAIN D5.1 Common optimisation protocol 42 / 53

The inspyred folder contains modules from the inspyred python package (Garret,
2012), including optimisation algorithms such as NSGA-II (Section 2.4). Users should
not deal with this folder.

The folder models must contain the SWAT+ model files and, if required, any other
model that needs to be included for calculating the (fitness) values of the
optimisation objectives. In OPTAIN, it is sufficient to include the SWAT+ model only.
Users need to add their own SWAT+ project (txt) in a folder called SWAT and make
sure that a number of model requirements is met (further details in section 4.3).
The folder economic_model contains the R scripts and input tables required to
calculate the socio-economic performance indicators. At the time of writing this
document, the files were still under preparation (Deliverable D4.5). They will be
added as soon as possible. In addition, the models folder contains two R files (by
default). The calc_opt_indis.R file defines all available functions for calculating the
environmental performance indicators. If additional functions are required to
calculate the optimisation objectives, the user must define them here or send a
request to the authors of this report. The SWAT.R file must be adapted to specify
the objectives used for the optimisation (see section 4.3).

The output folder is the directory where the log file (*_optimisation_log.txt) and
fitness values for each individual NSWRM plan tested in the optimisation
(*_individuals_file.csv) are printed. Genomes and fitness values of the final Pareto
optimal solutions are printed in the log file. The output file names contain a
timestamp (dd_MM_yyyy_hh_mm_ss) which indicate the time at which the
respective optimisation run was started. Users should access the results by running
the CoMOLA_postprocessing.R file (section 4.4), which is provided in the
output_analysis folder along with a file containing the postprocessing functions
(functions_postprocessing.R).

In addition to the folders already presented, the CoMOLA folder contains the init.R
file, which automatically writes the required files to the input folder, as well as a
number of python files needed to run the optimisation (users should not bother
with these). The only file in the main folder that is relevant for the user is the
CoMOLA master file (config.ini). This file must be adapted by defining the paths to
the R and python executables, as well as important optimisation parameters such
as population size and maximum number of generations (see Section 4.3).

 Setting up and starting an optimisation run
At this point in the protocol we assume that the user has installed python,
downloaded CoMOLA (https://git.ufz.de/optain/wp5-optimisation/comola) and
familiarised him or herself with the file structure of the optimisation tool (section
4.1 and 4.2). To set up an optimization run, three main steps must be taken:

(1) Add your own txt folder
(2) Adjust the SWAT.R script for your optimisation objectives
(3) Configure the master file (config.ini)

https://git.ufz.de/optain/wp5-optimisation/comola

OPTAIN D5.1 Common optimisation protocol 43 / 53

 Add your own txt folder

Create a copy of your SWAT+ project (txt folder) and add it to the models/SWAT
directory. Note that the SWAT+ project folder must be named ‘txt’. In the txt folder,
make sure:

1. That the simulation period is correctly defined in the time.sim file. It is
recommended to use the same period as used for the model calibration (but
not more than 10-15 years to avoid exhausting model runtimes). Also make
sure that the number of years to skip (parameter nyskip in the file print.prt)
is set correctly for printing the simulation output (typically nyskip = 3).

2. That the model is sufficiently parameterised (e.g. landuse.lum parameters,
initial soil nutrient values, correct operation schedules in the
management.sch file corresponding to the defined simulation period).

3. That the model is sufficiently calibrated (i.e. a calibration.cal file with
calibrated parameter values must be provided).

4. That the model prints only the relevant outputs required to calculate the
optimisation objectives (irrelevant model outputs would consume
unnecessary storage capacity and run time). If an optimisation objective
requires channel outputs in daily resolution (e.g. low or high flow indicators),
you must define the channel of interest (usually the outlet channel) in the
object.prt file.

5. That you have removed unnecessary files and folders (SWAT+ output files
can be extremely large).

6. That the SWAT+ master file (file.cio) lists all required input files, including
those mentioned above (time.sim, cal_parms.cal, calibration.cal, object.prt).

7. That one SWATmeasR project file (<project_name>.measr) is included. The
SWATmeasR project must contain appropriate settings for each of the
NSWRMs considered. It is strongly recommended to check the plausibility
of each individual NSWRM scenario prior to the optimisation.

The authors of this report thought several times that they had made all the settings
in their own model, but then they were proven wrong. As a full optimisation run
with SWAT+ models usually takes several weeks of time, double-checking is
strongly recommended. A demo txt version from CS1 is available in the OPTAIN
cloud (WPs & Tasks/WP5/SWAT+ model setups/CS1).

 Adjust the SWAT.R script

The SWAT.R file is the script that is responsible for running SWAT+ within CoMOLA.
When called, it implements the NSWRMs at individual sites within the study area
according to the CoMOLA genome, runs the SWAT+ model and calculates the
optimisation objectives. The optimisation targets are calculated based on a set of
predefined indicator functions (stored in the calc_opt_indis.R file). Ensure that the
correct indicator functions are used to calculate the objectives relevant to your case
study. Table 4.1 lists all available indicators and their functions at the time of writing
this report.

OPTAIN D5.1 Common optimisation protocol 44 / 53

Table 4.1: Indicator functions available for the optimisation. Note that some functions
require the variable x to be specified as an integer in square brackets; other functions
require the indicator name (ind); and one function requires both. Functions using the HRU
output files as input (e.g. ind_hru_wb_aa()) have the option of specifying the area
considered in the calculation. Parameter area can be either ‘basin’ (considering all HRUs in
the basin) or ‘agr’ (considering only cropland HRUs). The parameter period can be specified
in function ind_hru_mon_wb()to include only the months of interest (as integer values, e.g.
c(5:9) for the months May to September) in the calculation.

function ind_cha_aa(path, channel) [x]

x indicator description [unit]

1 Q_mean mean discharge [m³/s]

2 Nload total N load [kg/yr]

3 Pload total P load [kg/yr]

4 Sedload total sediment load [tons/yr]

function ind_cha_day(path, channel, ind) [x]

x indicator (ind) description [unit]

1 Q_max maximum daily discharge [m³/s]

2 Q_max_aa average maximum daily discharge of each year [m³/s]

3 Q_p95 95 percentile daily discharge [m³/s]

4 Q_p90 90 percentile daily discharge [m³/s]

5 Q_p50 50 percentile daily discharge [m³/s]

6 Q_p10 10 percentile daily discharge [m³/s]

7 Q_p05 5 percentile daily discharge [m³/s]

8 Q_min minimum daily discharge [m³/s]

9 Q_min_aa average minimum daily discharge of each year [m³/s]

10 Q_maxmin Q_max/Q_min ratio []

11 Q_maxmin_aa Q_max_aa/Q_min_aa ratio []

12 Q_low_days frequency daily discharge is below low flow threshold []

13 Q_high_days frequency daily discharge is below high flow threshold []

14 Nconc_days frequency total N concentrations is below threshold []

15 Pconc_days frequency total P concentrations is below threshold []

16 Sedconc_days frequency total sediment concentrations is below threshold []

function ind_hru_aa_nb(path, area) [x]

x indicator description [unit]

1 N_loss average annual N loss from land objects [kg N/ha,yr]

OPTAIN D5.1 Common optimisation protocol 45 / 53

2 P_loss average annual P loss from land objects [kg P/ha,yr]

3 Sed_loss average annual sediment loss from land objects [tons/ha,yr]

4 N_loss_ratio average annual N loss/input ratio []

5 P_loss_ratio average annual P loss/input ratio []

function ind_hru_aa_wb(path, area) [x]

x indicator description [unit]

1 sw average annual total soil moisture [mm]

2 sw300 average annual soil moisture in top 30 cm [mm]

3 perc average annual percolation [mm]

function ind_hru_mon_wb(path, ind, period, area)

 indicator (ind) description [unit]

sw average soil moisture of the whole soil profile in period of

interest [mm]

 sw300 average soil moisture (top 30cm) in period of interest [mm]

function ind_bsn_aa_crp(path, grain_units, ind, crops_sel)

 indicator (ind) description [unit]

 grain_units average annual sum of grain units in whole basin []

 cropland average annual area of cropland in whole basin [ha]

Below are some examples of how to use these functions in the SWAT.R file.
CoMOLA aims to maximise fitness values for all objectives. Therefore, if an objective
is to be minimised (such as the average nutrient load or the frequency of high
nutrient concentrations at the catchment outlet), the corresponding indicator
function must be multiplied by -1. Please note that the parameter path must always
be set to txt_path.

Example 1:
Optimisation objective 1 = Pload

- choose function ind_cha_aa()
- in file print.prt, indicate to print the average annual channel_sd output file
- define your channel of interest
- specify variable x in squared brackets (here x = 3)
- multiply with -1 as loads should be minimised

fit1 <- ind_cha_aa(path = txt_path,
 channel = 'cha0926')[3] * -1

OPTAIN D5.1 Common optimisation protocol 46 / 53

Example 2:
Optimisation objective 2 = frequency of days with streamflow > lowflow threshold

- choose function ind_cha_day()
- define your channel of interest
- in file object.prt, indicate to print this channel’s output to file cha_day.out
- define parameter ind (here: ‘Q_low_days’)
- define a meaningful lowflow threshold value (threshold_lowQ), such as the

observed average minimum daily discharge of each year of the simulation period)
- specify variable x in squared brackets (here x = 12)

fit2 <- ind_cha_day(path = txt_path,
 channel = 'cha0926',
 ind = 'Q_low_days',
 threshold_lowQ = 0.0344)[12]

Example 3:
Optimisation objective 3 = soil water (top 30cm) for period May to June in cropland

- choose function ind_hru_mon_wb()
- in file print.prt, indicate to print the monthly hru_wb output file
- define indicator of interest (here ‘sw300’)
- define period of interest (provide the numbers for the months of the year)
- define area of interest (can be either ‘basin’ for whole basin area or ‘agr’ for

cropland HRUs only)
- as the period consists of multiple months (May and June), calculate the mean value

of this period using mean(as.numeric())

fit3 <- mean(as.numeric(ind_hru_mon_wb(path = txt_path,
 ind = 'sw300',
 period = c(5:6),
 area = 'agr')))

Example 4:
Optimisation objective 4 = grain unit sum for the whole basin

- choose function ind_bsn_aa_crp()
- define the crop types to be considered (here all crop types are used that are listed

in R object grain_units)
- define the indicator of interest (here ‘grain_units’)
- define crop-specific grain units (here the R object grain_units is defined for the

same-named function parameter); the R object grain_units with your crops of
interest must be specified before defining the optimisation objective

OPTAIN D5.1 Common optimisation protocol 47 / 53

grain_units <- data.frame('wbar' = 1.163,
 'csil' = 1.071,
 'wwht' = 1.209,
 'wira' = 1.429,
 'barl' = 1.163,
 'akgs' = 0.682,
 'wiry' = 1.174,
 'sgbt' = 1)

fit4 <- ind_bsn_aa_crp(path = txt_path,
 crop_sel = names(grain_units),
 ind = 'grain_units',
 grain_units = grain_units)

 Configure the master file (config.ini)

The config.ini file lists all parameters which are relevant to run an optimisation with
CoMOLA. To set up the CoMOLA runs, the parameter sections [config_model] and
[config_optimization_algorithm] have to be adjusted. In the section [config_model]
the paths to the R and python executable files must be set (file_path_R and
file_path_Python, respectively). An easy way to find the correct path to the R
executable file (which is also used by RStudio) is to open RStudio and execute the
command R.home('bin') in the console. This returns the path to the R executable,
which must be assigned to the parameter file_path_R in the config.ini.

> R.home('bin')
#> [1]"C:/Users/schuerz/AppData/Local/Programs/R/R-4.2.2/bin/x64"

The identification of the path to the correct python executable file was shown in
the miniconda setup in section 4.1.2. The execution of the command where python
in the Anaconda prompt (see Figure 4.6) returns the path to the python version
3.11.9 which was installed before. The path can be copied and assigned to the
parameter file_path_Python in the config.ini.

Of the optimisation parameters, only two need to be adjusted, pop_size and
max_generations.

pop_size defines the size of the population (i.e. the number (n) of individual NSWRM
plans within a population). The population size should be large enough to ensure
sufficient diversity between individuals, to accurately approximate the true Pareto
front, and to prevent premature convergence to local optima by providing a
broader genetic pool and more opportunities for crossover and mutation. Common
practice suggests population sizes in the range of 50 to 500 for many optimisation
problems (e.g. Coello Coello et al., 2007; Deb et al., 2002; Zitzler et al., 2001), but this
can vary widely. Defining the population size requires consideration of problem
complexity, computational resources, and empirical testing to find a balance that

OPTAIN D5.1 Common optimisation protocol 48 / 53

ensures efficient and effective optimisation. As the SWAT+ models in OPTAIN
require long computation times to evaluate the fitness of an individual NSWRM
plan (~10 to 30 minutes for a 10-year simulation period), we do not have the time
and computational resources for in-depth empirical testing in any of the case
studies. Based on our experience from previous land use optimisation studies (e.g.
Kamamia et al., 2022; Verhagen et al., 2018), we suggest setting pop_size to a value
of 100. At the start of the optimisation, CoMOLA would then create 100 copies of the
models folder in which the SWAT+ model can be run in parallel. Make sure that you
have enough disc space in your CoMOLA environment. For the first test runs,
pop_size should not be greater than 5.

max_generations defines the maximum number of generations (i.e. the number of
iterations in which a new offspring population of NSWRM plans is generated and
evaluated during the optimisation). While pop_size must be large enough to
ensure good coverage of the search space, max_generations must be large enough
to allow the process of refining and improving upon the existing solutions to
enhance their fitness. Due to the limited resources mentioned above, we suggest
limiting the number of generations to 150. This would result in a CoMOLA routine
with 15,100 SWAT+ model runs, which could take 7 to 30 days to compute for an
average-sized SWAT+ model, depending on the resources available (in particular
the type of processor and the number of cores to be used for parallel processing).
For initial testing, it is recommended to set max_generations to 2.

In summary, there are four settings to be made in the config.ini file:

(1) file_path_R = path to your R executable

(2) file_path_Python = path to your python executable (version 3.11.9)

(3) pop_size = 100 (for initial tests pop_size = 5)
(4) max_generations = 150 (for initial tests pop_size = 2)

 Starting the optimisation (run_comola.bat)

The CoMOLA routine starts with a double click on the batch file run_comola.bat.
This opens the Windows command prompt and performs some internal checks on
important optimisation requirements (e.g. if the correct version of the SWATmeasR
R package has been used to build the SWATmeasR project). If any of the
requirements are not met, an error message is printed to the file error_log.txt and
the routine is aborted (Figure 4.9). All problems must be solved before the actual
CoMOLA routine is started.

Figure 4.9: Prompt indicating errors at the start of CoMOLA.

OPTAIN D5.1 Common optimisation protocol 49 / 53

If there are no errors, the command prompt will ask for the number of cores to be
used to run CoMOLA (Figure 4.10). It is strongly recommended to use a High
Performance Computing (HPC) cluster for Windows (the current SWAT+
executable used in OPTAIN has not been compiled for Linux). An HPC would allow
CoMOLA (actually the SWAT+ model) to run on more than 20 nodes. The optimal
number of cores is equal to pop_size. Then all individuals of a generation would run
in parallel. If no HPC is available, a single machine can be used. However, this
machine should be powerful and not be used for other tasks while the optimisation
is running.

Figure 4.10: Prompt indicating a successful start of the CoMOLA routine.

Running SWAT+ models can take a while (be patient with a log text such as shown
in Figure 4.11). Errors will be printed in the command prompt and in the
*_optimisation_log.txt file. Post the error message on the UFZ GitLab or GitHub if
you cannot fix the problem yourself. A successful run of CoMOLA will automatically
close the command prompt.

Figure 4.11: Prompt indicating SWAT+ models running in parallel.

 Analysis of results
For each successful optimisation run, CoMOLA creates five output files in the
output folder, of which only two files are relevant for the analysis of results:
*_optimisation_log.txt (also called ‘log file’, * indicating the date and time of the start
of the optimisation run) and *_individuals_file.csv (also called ‘ind file’).

The log file contains all the information printed to the command prompt during
the optimisation and can be used to check for any errors that may have occurred.
To do this, simply open the file in a text editor and search for the term ‘Error’. At the
end of this file, the user can find the final set of Pareto optimal solutions (fitness

OPTAIN D5.1 Common optimisation protocol 50 / 53

values and genomes). The genomes and fitness values of all NSWRM plans tested
in the optimisation can be found in the ind file.

As the output format in these files may not be convenient for users, it is
recommended to access the optimisation results using the R script
CoMOLA_postprocessing.R provided in the folder output_analysis. Running this file
will extract and save the genomes and the fitness values of the Pareto optimal
NSWRM plans in the files pareto_genomes.txt and pareto_fitness.txt, respectively.
In addition, the hypervolume metric proposed by Zitzler and Thiele (1999) is
computed to evaluate the different solution sets for each generation. Hypervolume
is a widely accepted multi-objective performance metric that measures both
convergence and diversity on a single scale without requiring knowledge of the
true Pareto front for comparison (Jiang et al., 2014). It represents the volume in the
objective space dominated by the set of solutions for a given reference point (here
we use the origin of the coordinates). Thus, higher values of the hypervolume
indicate that the solutions are closer to the true Pareto front and, at the same time,
that they are more evenly distributed in the objective space (Jiang et al., 2014). The
file CoMOLA_postprocessing.R can be used to plot the evolution of hypervolumes
over generations. A converging curve (see an example in Figure 4.12) indicates
sufficient exploration of the solution space. If the curve does not converge, this
indicates that it is worth repeating the optimisation with a higher number of
generations (parameter max_generations in the file config.ini).

Figure 4.12: Evolution of hypervolumes over generations. Example plot using the
CoMOLA_postprocessing.R file.

OPTAIN D5.1 Common optimisation protocol 51 / 53

Eventually, the user can create a simple Pareto plot for the set of best solutions (see
for example Figure 4.13). To do this, meaningful names should be defined for the
different objectives at the beginning of the R script (corresponding to the indicator
functions used for fit1, fit2, etc. in file SWAT.R, section 4.3).

Figure 4.13: Scatterplot of Pareto optimal solutions created with the
CoMOLA_postprocessing.R file (example plot).

The R code to post-process (e.g. visualise, filter) Pareto optimal solutions will be
extended in the next phase of the project and published in Deliverable D5.2 ‘Report
& Code for post-processing of optimisation results’.

OPTAIN D5.1 Common optimisation protocol 52 / 53

5. References

Chang, W., 2022. R6: Encapsulated Classes with Reference Semantics. https://r6.r-
lib.org, https://github.com/r-lib/R6/.

Coello Coello, C. A., Lamont, G. B., Van Veldhuizen, D. A., 2007. Evolutionary
Algorithms for Solving Multi-Objective Problems. Springer.

Cord, A.F. et al., 2017. Towards systematic analyses of ecosystem service trade-offs
and synergies: Main concepts, methods and the road ahead. Ecosystem
Services, 28: 264-272. DOI:10.1016/j.ecoser.2017.07.012

Deb, K. et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2): 182-197.
DOI:10.1109/4235.996017

Garrett, A., 2012. inspyred (Version 1.0.1) [software]. Inspired Intelligence. Retrieved
from https://github.com/aarongarrett/inspyred [accessed 27.05.2014]

Jiang, R. et al., 2021. A Hybrid Multi-Objective Optimization Method Based on NSGA-
II Algorithm and Entropy Weighted TOPSIS for Lightweight Design of Dump
Truck Carriage. Machines, 9(8): 156. DOI:10.3390/machines9080156

Jiang, S. et al., 2014. Consistencies and contradictions of performance metrics in
multiobjective optimization. IEEE Trans. Cybern. 44 (12), 2391–2404.
DOI:10.1109/TCYB.2014.2307319

Kaim, A., Cord, A.F., Volk, M., 2018. A review of multi-criteria optimization techniques
for agricultural land use allocation. Environmental Modelling & Software, 105:
79-93. DOI:10.1016/j.envsoft.2018.03.031

Kaim, A., Strauch, M., Volk, M., 2020. Using Stakeholder Preferences to Identify
Optimal Land Use Configurations. Frontiers in Water, 2.
DOI:10.3389/frwa.2020.579087

Krzeminska, D. & Monaco, F., 2022. Tailored environmental and socio-economic
performance indicators for selected measures. Deliverable D2.2 of the EU
Horizon 2020 project OPTAIN. DOI:10.5281/zenodo.7050653

Marval, Š., et al., 2022. SWAT+ and SWAP retention measure implementation
handbook. Deliverable D2.3 of the EU Horizon 2020 project OPTAIN.
DOI:10.5281/zenodo.11232719

Memmah, M.-M. et al., 2015. Metaheuristics for agricultural land use optimization. A
review. Agronomy for Sustainable Development, 35(3): 975-998.
DOI:10.1007/s13593-015-0303-4

Piniewski, M. et al., 2024: Assessment of NSWRM effectiveness under current and
future climate at the catchment scale. Deliverable D4.4 of the EU Horizon
2020 project OPTAIN. DOI:10.5281/zenodo.11233621

Schürz, C., 2024a: SWATbuildR: An object connectivity based SWAT+ model builder,
R package version 0.1.17. URL: https://git.ufz.de/schuerz/swatbuildr

https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
https://git.ufz.de/schuerz/swatbuildr

OPTAIN D5.1 Common optimisation protocol 53 / 53

Schürz, C., 2024b SWATfarmR: Simple rule based scheduling of management
operations in SWAT, R package version 4.0.3. URL:
https://github.com/chrisschuerz/SWATfarmR

Schürz, C. et al., 2022. SWAT+ modeling protocol for the assessment of water and
nutrient retention measures in small agricultural catchments. Deliverable
D4.2 of the EU Horizon 2020 project OPTAIN. DOI:10.5281/zenodo.7463395

Strauch, M. et al., 2019. Constraints in multi-objective optimization of land use
allocation – Repair or penalize? Environmental Modelling & Software, 118: 241-
251. DOI:10.1016/j.envsoft.2019.05.003

Zitzler, E., Laumanns, M., & Thiele, L., 2001. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. TIK-Report, 103.

Zitzler, E. & Thiele, L., 1999. Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3 (4),
257–271. DOI:10.1109/4235.797969

	Summary
	Table of Contents
	Abbreviation list
	1. Introduction
	1.1. Objective

	2. OPTAIN’s optimisation concept
	2.1. Definition of optimisation objectives
	2.2. Definition of the decision space
	2.3. Functions evaluating the objectives
	2.4. Multi-objective optimisation algorithm

	3. SWAT+ model preparation
	3.1. Basic SWAT+ model configuration
	3.2. Building a SWATmeasR project
	3.2.1. General SWATmeasR workflow
	3.2.2. Initialising a new SWATmeasR project
	3.2.3. General structure of a SWATmeasR project
	3.2.4. NSWRM definition
	3.2.5. Definition of NSWRM locations
	3.2.6. NSWRM implementation

	4. Running the optimisation
	4.1. python installation
	4.1.1. miniconda installation
	4.1.2. miniconda setup

	4.2. CoMOLA file structure
	4.3. Setting up and starting an optimisation run
	4.3.1. Add your own txt folder
	4.3.2. Adjust the SWAT.R script
	4.3.3. Configure the master file (config.ini)
	4.3.4. Starting the optimisation (run_comola.bat)

	4.4. Analysis of results

	5. References

