Introduction into OPTAIN & goals of the webinar

Optimal strategies to retain and re-use water and nutrients in small agricultural catchments across different soilclimatic regions in Europe

Natural/Small Water Retention Measures (NSWRM)

Changing land cover (,permanent' greening)

Changing morphology & drainage

Changing hydromorphology

Changing crop/soil management

- Riparian buffers
 Edge-of-field filter strips
- Hedges dividing large fields
- Grassland cover on erosive slopes Grassland cover in recharge areas Afforestation
- Retention/detention ponds Constructed wetlands Controlled drainage Terracing Swales
 - Floodplain restoration Channel restoration No-till agriculture
- Low-till agriculture Mulching Subsoiling Crop rotation Intercropping
- Cover crops
 Early sowing
 Drought-resistent plants
- (• German case study)

Detailed documentation of existing examples (<u>qcat.wocat.net</u>)

> the Global Database on Sustainable Land Management is the primary recommended database by UNCCD

Modeling environmental and economic performance

Environmental: • Soil moisture, surface runoff, streamflow
 • N, P, sediment (on-site losses, river loads)
 • Agricultural gross margin, grain units

Economic: • Agricultural gross margin, grain units• Implementation and maintenance costs

Surveys of famers/farm advisors

Multi-objective optimisation of measure allocation

SWAT+

Analyse trade-offs and identify solutions preferred by stakeholders

Policy recommendations

🔮 OPTAIN

Goals of this Webinar:

- Get to know the modeling approach in OPTAIN
- Get aware of most relevant and innovative modeling tools and workflows
 - > Why needed?
 - ➢ How to use?
 - > Inspire you to use them!

Modeling challenge #1

Be sufficiently spatial with your processes!

Objects in SWAT+

(source: Katrin Bieger)

Units in a SWAT+ model setup with specific hydrologic functions

Fluxes between objects are defined through their connectivity

A conventional model setup - Default configuration of object connectivity with QSWAT+

HRU outputs are lumped within landscape units (LSU)

A conventional model setup – HRUs are usually fragmented units

OPTAIN requires a closer look to field-scale effects

- HRUs should be self-contained units
- HRU outputs should be routed through a cascade of adjacent HRUs before being fed into the channel/reservoir

Our solution...

SWATbuildR - Input data

- Objects are organized in vector layers
- Each polygon in the input layers will be a unique object in the SWAT+ model setup
- Attribute tables require id column and a type column

- Soil layer with SWAT soil input table required
 - \rightarrow Dominant soil is assigned to land units
- DEM required to calculate the land object connectivity

SWATbuildR - Surface water object connectivity

🔮 OPTAIN

- Surface water body network is generated from channels and water objects in the land layer
- User defines outlet channel or reservoir id
- Connectivity network is back propagated from this object
- This approach allows branching rivers and multiple (and no) inlets in reservoirs

- Routine iterates over all land objects
- Water objects are excluded and burnt in (routed water will end up in water objects)

- Routine iterates over all land objects
- Water objects are excluded and burnt in (routed water will end up in water objects)
- For each object, flow accumulation and flow direction to neighbor objects is calculated

- Routine iterates over all land objects
- Water objects are excluded and burnt in (routed water will end up in water objects)
- For each object, flow accumulation and flow direction to neighbor objects is calculated
- Net sum of flow that crosses a boundary determines the flow fraction of sur and lat flow into neighbor object

- Routine iterates over all land objects
- Water objects are excluded and burnt in (routed water will end up in water objects)
- For each object, flow accumulation and flow direction to neighbor objects is calculated
- Net sum of flow that crosses a boundary determines the flow fraction of sur and lat flow into neighbor object

SWATbuildR – How to use?

(1) Download full OPTAIN R-workflow (<u>https://zenodo.org/records/12564534</u>) or wait for standalone R-package on GitHub (will be published soon)

- (2) Prepare inputs (DEM, soils, land use, channels, point sources) \Rightarrow see Data/for_buildr
- (3) Open _WORKFLOW.Rproj in RStudio

- (4) Open settings.R
 - \Rightarrow in SWATbuildR section, adjust paths to your input data
 - \Rightarrow define channel or reservoir id at outlet and a few more things
- (5) Open and run setup_workflow.R (until line 42)
 - \Rightarrow In case of errors, follow advice of the error message
 - \Rightarrow If the problem cannot be solved, post on GitHub or drop an email

SWATbuildR – Result

- ⇒ basic SWAT+ setup with connectivities defined for each land and water object, without resulting in infinite loops
- \Rightarrow further input data supply and parameterisation necessary

- sqlite database of your SWAT+ project
- ⇒ you can import to SWATEditor or just continue with the full workflow (setup_workflow.R)
- data folder including...
- \Rightarrow raster: soil.tif and lots of DEM processing results
- \Rightarrow vector: basin, channel, reservoir, hru, etc. shapefiles

Modeling challenge #3

Be sufficiently detailed with your crop management!

Agricultural management – Model setup requirements in OPTAIN

- A representative crop management needs to be defined for each individual field for long simulation periods (30 years + warm-up)
- Decision tables would blow up computation time (thus fixed operation dates need to be defined)
- Operation dates must account for rainfall (e.g. no fertiliser application on a rainy day)
- ⇒ A workflow is needed to automate the writing of long and consistent management operation schedules

🔮 OPTAIN

One part of the solution...

SWATfarmR

Simple rule based management operation scheduling

https://chrisschuerz.github.io/SWATfarmR/

,The SWATfarmR is a pre-processing tool for the scheduling of farm management operations for SWAT+ and SWAT2012 projects. SWATfarmR develops management schedules for each HRU of a SWAT model setup based on user defined management tables. The user can define rules that control the timing of operations. These rules can include information on temporal constraints, an HRU's spatial properties, or any climatic or other external variable to control the scheduling of an operation.'

The full solution/workflow...

The full solution/workflow...

(1) You need a land use shapefile with a sequence of crops for each field and for each year of the simulation period

For more details Schürz et al. (2022) https://doi.org/10.5281/zenodo.7463395

lu_crops_schoeps	s — Features Total: 53	333, Filtered: 5333, 1	Selected: 0
	5 × 0 B 🕹 📒	🖸 🔩 🍸 🗷 🤻	P 16 8 1
lu	y_1988	y_1989	y_1990
field_99	wira_cash_normtill	csil_cash_normtill	wiry_cash_lowtill
field_100	barl_fodder_nor	akgs_fodder_nor	csil_fodder_lowtill
field_101	wiry_fodder_lowtill	wbar_fodder_low	wira_fodder_lowtill
field_102	csil_cash_normtill	wwht_cash_norm	wbar_cash_normtill
field_103	wbar_fodder_nor	wira_fodder_nor	wwht_fodder_no
field_104	wira_fodder_nor	wwht_fodder_no	wira_fodder_nor
field_104	wira_fodder_lowtill	wwht_fodder_no	wira_fodder_lowtill
field_104	wira_fodder_lowtill	wwht_fodder_lo	wira_fodder_lowtill
field_105	wbar_fodder_low	wira_fodder_lowtill	wwht_fodder_no

Show All Features

Example from German Case Study

	y_2020	y_2021
	wiry_cash_lowtill	csil_cash_normtill
	csil_fodder_lowtill	wiry_fodder_lowtil
	wira_fodder_lowtill	csil_fodder_nor
•	wbar_cash_normtill	csil_cash_normtill
	wwht_fodder_no	csil_fodder_nor
	wira_fodder_nor	barl_fodder_nor
	wira_fodder_lowtill	barl_fodder_lowtil
	wira_fodder_lowtill	barl_fodder_lowtil
11	wwht_fodder_no	csil_fodder_lowtill

(2) You need typical 1-year management schedules for single crops and generic land-use classes

b) crop_mgt.csv

	А	В	С	D	E	F	G	Н	1	
1	crop_mgt	mon_1	day_1	mon_2	day_2	operation	op_data1	op_data2	op_data3	
2	wwht_cash_normtill	9	15	10	7	fertilizer	elem_p	broadcast	25.4	ר
3	wwht_cash_normtill	9	16	10	8	tillage	cultiv25			
4	wwht_cash_normtill	9	24	10	9	tillage	harrow7			
5	wwht_cash_normtill	9	25	10	10	plant	wwht			
6	wwht_cash_normtill					skip				1 9
7	wwht_cash_normtill	3	3	3	17	fertilizer	elem_n	broadcast	77.7	누혖
8	wwht_cash_normtill	4	23	5	7	fertilizer	elem_n	broadcast	50	
9	wwht_cash_normtill	5	25	6	8	fertilizer	elem_n	broadcast	15	
10	wwht_cash_normtill	7	25	8	17	harvest_only	wwht	grain		
11	wwht_cash_normtill	7	25	8	17	kill_only	wwht			
12	wwht_cash_normtill	7	26	8	19	tillage	fldcul10			
13	csil_fodder_lowtill	10	8	10	22	tillage	fldcul12			ר
14	csil_fodder_lowtill					skip				
15	csil_fodder_lowtill	4	14	4	28	fertilizer	beefg_fl	aerial_liquid	40000	
16	csil_fodder_lowtill	4	14	4	28	fertilizer	elem_n	broadcast	15	
17	csil_fodder_lowtill	4	14	4	28	fertilizer	elem_p	broadcast	15	Lă
18	csil_fodder_lowtill	4	15	4	29	tillage	harrow8			Γŏ
19	csil_fodder_lowtill	4	17	5	1	plant	csil			- Φ
20	csil_fodder_lowtill	9	8	9	22	harvest_only	csil	silage		
21	csil_fodder_lowtill	9	8	9	22	kill_only	csil			
22	csil_fodder_lowtill	9	20	10	3	tillage	fldcul10			J

...plus all other individual schedules for crops occuring in the sequences provided with the map (the order of crops does not matter)

c) generic_mgt.csv

	А	В	С	D	E	F	G	Н	1
 1	lulc_mgt	mon_1	day_1	mon_2	day_2	operation	op_data1	op_data2	op_data3
2	meadow_4cuts					initial_plant	fesc_comm	1,1000,0,0,1,1000	
3	meadow_4cuts	3	1	3	31	fertilizer	elem_n	broadcast	70
4	meadow_4cuts	3	1	3	31	fertilizer	elem_p	broadcast	25
5	meadow_4cuts	5	5	5	10	harvest_only	fesc	hay_cut_low	
6	meadow_4cuts	5	11	5	15	fertilizer	elem_n	broadcast	60
7	meadow_4cuts	6	12	6	23	harvest_only	fesc	hay_cut_low	
8	meadow_4cuts	6	25	6	30	fertilizer	elem_n	broadcast	40
9	meadow_4cuts	7	25	8	5	harvest_only	fesc	hay_cut_low	
10	meadow_4cuts	9	15	9	30	harvest_only	fesc	hay_cut_low	
11	meadow_4cuts	10	15	10	30	fertilizer	beefg_fl	aerial_liquid	25000
12	meadow_3cuts					initial_plant	fesc_comm	1,1000,0,0,1,1000	
13	meadow_3cuts	3	1	3	31	fertilizer	elem_n	broadcast	60
14	meadow_3cuts	3	1	3	31	fertilizer	elem_p	broadcast	25
15	meadow_3cuts	5	15	5	25	harvest_only	fesc	hay_cut_low	
16	meadow_3cuts	5	27	6	5	fertilizer	elem_n	broadcast	40
17	meadow_3cuts	7	25	8	5	harvest_only	fesc	hay_cut_low	
18	meadow_3cuts	8	7	8	12	fertilizer	elem_n	broadcast	40
19	meadow_3cuts	9	15	9	30	harvest_only	fesc	hay_cut_low	
20	meadow_3cuts	10	15	10	30	fertilizer	beefg_fl	aerial_liquid	15000
21	meadow_2cuts					initial_plant	fesc_comm	1,1000,0,0,1,1000	
22	meadow_2cuts	3	1	3	31	fertilizer	elem_n	broadcast	60
23	meadow_2cuts	3	1	3	31	fertilizer	elem_p	broadcast	25
24	meadow_2cuts	5	25	6	5	harvest_only	fesc	hay_cut_low	
25	meadow_2cuts	6	7	6	15	fertilizer	elem_n	broadcast	40
26	meadow_2cuts	8	10	8	25	harvest_only	fesc	hay_cut_low	
27	orcd					initial_plant	orcd_comm	2,20000,0,0,1,10000	
28	orcd	9	1	10	31	harvest_only	orcd	orchard	
29	frst					initial_plant	frst_comm	2,50000,0,0,1,10000	
30	wetl					initial_plant	wetl_comm	2,50000,0,0,1,10000	
31	rngb					initial_plant	rngb_comm	1,1000,0,0,1,1000	
 32	rnge					initial_plant	rnge_comm	1,1000,0,0,1,1000	
 33	bsvg					initial_plant	bsvg_comm	0.1,10,0,0,1,10	

For more details Schürz et al. (2022) https://doi.org/10.5281/zenodo.7463395

Full schedule

Full schedule

a) landuse.shp Run write SWATfarmR input.R to (1) combine the schedules according to the sequences for each field (2) solve date conflicts (overlaps) in the combined schedules b) crop mgt.csv (3) write the combined schedules into SWATfarmR input format c) generic_mgt.csv write_SWATfarmR_input.R × 🔄 🔿 🛛 🔚 🖳 Source on Save 🛛 🔍 🎢 🗸 📗 169 170 - # Check for correct positioning of 'skip' line ----check_skip <- check_skip_position()</pre> 171 172 173 - # Check for date conflicts within single crop schedules ----check_date_conflicts1() 174 175 176 - # Build schedules for crop sequences ----rota_schedules <- build_rotation_schedules()</pre> 177 178 179 - # Check for date conflicts in combined (rotation) schedule -----check_date_conflicts2() 180 181 182 - # Solve minor date conflicts (where only a few days/weeks are overlapping)----rota_schedules <- solve_date_conflicts()</pre> 183 184 185 - ## check again for date conflicts ----check_date_conflicts2() 186 187 188 - ## write the SWAT farmR input table ----write_farmR_input() 189 190 d) farmR_input.csv

For more details Schürz et al. (2022) https://doi.org/10.5281/zenodo.7463395

d) farmR_input.csv

	А	В	С	D	Ε	F	G	Н	I	
1	land_use	management	weight	filter_attribute	condition_schedule	operation	op_data1	op_data2	op_data3	
2	field_1_lum	1				initial_plant	wbar	1,1000,0,0,1,1000		
3	field_1_lum				(md >= 0215) * (md <= 0305) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op) + 1))	fertilizer	beefg_fl	aerial_liquid	21000	
4	field_1_lum				(md >= 0325) * (md <= 0410) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	fertilizer	elem_n	broadcast	68.145	
5	field_1_lum				(md >= 0701) * (md <= 0720) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	harvest_on	ly wbar	grain		
6	field_1_lum					kill_only	wbar			
7	field_1_lum				(md >= 0710) * (md <= 0731) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	tillage	fldcul15			
8	field_1_lum				(md >= 0805) * (md <= 0905) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	tillage	harrow5			
9	field_1_lum				(md >= 0806) * (md <= 0906) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	plant	radi			
10	field_1_lum				(md >= 0314) * (md <= 0328) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op) + 1))	harvest_on	lyradi	grass_mulch		
11	field_1_lum					kill_only	radi			
12	field_1_lum				(md >= 0408) * (md <= 0422) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	tillage	fldcul12			
13	field_1_lum				(md >= 0414) * (md <= 0428) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	fertilizer	beefg_fl	aerial_liquid	40000	
14	field_1_lum					fertilizer	elem_n	broadcast	15	
15	field_1_lum					fertilizer	elem_p	broadcast	15	
16	field_1_lum				(md >= 0415) * (md <= 0429) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	tillage	harrow8			
17	field_1_lum				(md >= 0417) * (md <= 0501) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	plant	csil			
18	field_1_lum				(md >= 0908) * (md <= 0922) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	harvest_on	ly csil	silage		
19	field_1_lum					kill_only	csil			
20	field_1_lum				(md >= 0920) * (md <= 1003) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	tillage	fldcul10			
21	field_1_lum				(md >= 0916) * (md <= 1008) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	tillage	fldcul12			
22	field_1_lum				(md >= 0924) * (md <= 1009) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	tillage	harrow7			
23	field_1_lum				(md >= 0925) * (md <= 1010) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	plant	wwht			
24	field_1_lum				(md >= 0303) * (md <= 0317) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op) + 1))	fertilizer	beefg_fl	aerial_liquid	27500	
25	field_1_lum				(md >= 0423) * (md <= 0507) * (1 - w_log(pcp, 0, 7)) * (1 - w_log(api, 5, 20)) * (year == (year(prev_op)))	fertilizer	elem_n	broadcast	88.99	
					· · · · · · · · · · · · · · ·			_		

Run SWATfarm

For more details Schürz et al. (2022) https://doi.org/10.5281/zenodo.7463395

Run SWATfarmR

d) farmR_input.csv	\equiv Run SWATfarmR to schedule exact dates (so far we have time windows) ar	nd write SWAT+ files
	farmr.R ×	
	A Source on Save Q	
	Q. sq_val Next Prev All CS1 Replace All	
	□ In selection □ Match case □ Whole word □ Regex ✔ Wrap	
	<pre>17 * # 18 # Install and load the SWATfarmR 19 remotes::install_github("chrisschuerz/SWATfarmR") 20 library(SWATfarmR)</pre>	
	21 22 • #	
	<pre>23 # Define the path to your SWAT project 24 pth <- 'C:/CS_1/txt' 25 # Define the path to your management schedule csv 26 mgt <- 'C:/CS_1/farmR_input.csv' 27</pre>	
	<pre>28 + # 29 # Create a new farmR project 30 new_farmr('farmR_CS1', pth) 31 32 - #</pre>	
	<pre># Define parameters for calculating the antecedent precipitation index as a # proxy for soil moisture and assign it to hrus api <- variable_decay(farmR_CS1\$.data\$variables\$pcp, -5,0.8) asgn <- select(farmR_CS1\$.data\$meta\$hru_var_connect, hru, pcp) farmR_CS1\$add_variable(api, "api", asgn, overwrite = T) </pre>	
	<pre>39 * #</pre>	 In your SWAT txt folder it rewrites: management.sch hru-data.hru
	<pre>44 # Schedule the operations based on the rules (we only defined api as a rule) 45 farmR_CS1\$schedule_operations(start_year = 1988, end_year = 2020, replace = 'all') 46 47 #</pre>	- landuse.lum
	<pre>48 # Write the schedules into your SWAT project txt input files 49 farmR_CS1\$write_operations(start_year = 1988, end_year = 2020)</pre>	- time.sim

Modeling challenge #5

Be sufficiently spatial with your retention measures!

What is needed...

NSWRM

Riparian buffer

Hedge row

Cover crops Retention pond

NA

What is needed...

NSWRM

Riparian buffer

Hedge row

Cover crops Retention pond

NA

The solution...

See also Christoph's presentation at the SWAT conference:

https://swat.tamu.edu/conferences/2024-france/agenda/#gallery-19

(1) Setup a .measr project

(2) Then use it to implement

NSWRMs

- Each measure which could potentially be implemented must be defined
- The following measure types can be defined:
 - > **'management '** : All management scheduling related measures, e.g. conservation farming, cover crops...
 - > 'land_use' : All land use change type measures, e.g. buffer strips, grassed waterways, hedge rows...
 - > 'wetland': Wetland water storage is added to a land object
 - > 'pond'/'constr_wetland': Retention and detention ponds. Land object is replaced by a reservoir.

NSWRM allocation in CS1

What: Lower tillage depth (max. 12 cm), no autumn furrow, instead winter cover crop before corn, sugar beet or spring barley.Where: Fields with high potential erosion risk (on average > 15 t/ha,a) according to LfULG risk map.

- What: Depending on site, principal volume of 700-1700 m³ and emergency volume of 1300-3200 m³; drawdown from emergency to principal spillway within 2 days.
- Where: At the end of erosive slopes with close connection to streams and a minimum drainage area of 50 ha.

What: Permanent grass strip of 30 m width. Where: Erosive slopes in close distance/connection to river network.

What: Permanent grass strip of 12 m width. Where: Fields without existing 'green' buffer along streams.

What: Deciduous forest strip of 15 m width; pruning every 5 years. Where: In fields with exceptionally low density of semi-natural habitats (SNH) in the surrounding area, if possible along contour lines and connecting existing SNH.

type = 'land_use'

Definition csv table for land use change type NSWRMs:

type = 'pond'/'constr_wetland'

Definition csv table for ponds and constructed wetlands:

hru_id	cha_to_id	cha_from_id	area_ps	vol_ps	area_es	vol_es	k evap_co	shp_co1	shp_co2	rel	sed	nut
153	475		0.035	0.071	0.044	0.132				drawdown_days2	sedres1	nutres1
201	565	j	0.059	0.119	0.0742	0.223				drawdown_days2	sedres1	nutres1
234	846	i	0.071	0.141	0.088	0.264				drawdown_days2	sedres1	nutres1
270	941									drawdown_days2	sedres1	nutres1
997	613		0.07	0.145	0.085	0.271				drawdown_days2	sedres1	nutres1
1634	929)								drawdown_days2	sedres1	nutres1
2104	395	604, 605	5							drawdown_days2	sedres1	nutres1
5087	934	931, 932	2							drawdown_days2	sedres1	nutres1
5096	524									drawdown_days2	sedres1	nutres1
			cha_1 is opt	from_ic	ł		Empty defaul will be assign	v fields It values e ned		area_ps vol_ps area_es vol_es k evap_co shp_co1 shp_co2 rel sed nut	= 0.8 * a = 2.0 * a = 1.0 * a = 3.0 * a = 1.0 = 0.6 = 0 = 0 = 0 = 'drawdo = 'sedres = 'nutres	rea_hru- rea_ps- rea_hru- rea_es- wn_days'- 1'- 1'-

id		name	nswrm	obj_id
	1	buffer_1	buffer	479
	2	buffer_2	buffer	710
	3	buffer_3	buffer	468
	4	buffer_4	buffer	337
	5	buffer_5	buffer	206, 287, 856
	6	buffer_6	buffer	140, 142
	7	grassslope_1	grassslope	201, 203
	8	grassslope_2	grassslope	209
	9	grassslope_3	grassslope	607, 608, 610, 613
	10	hedge_1	hedge	5278, 5284
	11	hedge_2	hedge	126
	12	hedge_3	hedge	122, 123, 124
	13	hedge_4	hedge	74, 75, 76, 83
	14	lowtillcc_1	lowtillcc	1, 2, 5, 9, 10, 11
	15	lowtillcc_2	lowtillcc	17, 18
	16	lowtillcc_3	lowtillcc	19, 20, 21, 22, 23
	17	lowtillcc_4	lowtillcc	25
	18	lowtillcc_5	lowtillcc	49, 50, 51, 52
	19	pond_1	pond	997
	20	pond_2	pond	5087

- **id** will be the ID to implement a measure.
- **name** is user definable for each measure location.
- **nswrm** refers to the entries in the definition files for the respective NSWRM types (e.g. buffer, hedge, and grassslope were defined in the land_use definition file).
- obj_id are single or multiple values of HRUs which are affected by the implementation of an NSWRM.

Highly recommended reading:

Strauch & Schürz (2024) https://zenodo.org/records/11473793

D5.1: Common optimisation protocol

Authors: Michael Strauch (UFZ), Christoph Schürz (UFZ)

Delivery Date: 31. May 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 862756.

Table of Contents

Summa	₩.	5
Abbrevi	ation list	
l. Intro	duction	
1.1.	Objective	8
2. OPT	- AIN's optimisation concept	9
2.1.	Definition of optimisation objectives	10
2.2.	Definition of the decision space	11
2.3.	Functions evaluating the objectives	11
2.4.	Multi-objective optimisation algorithm	
3. SWA	AT+ model preparation	
3.1.	Basic SWAT+ model configuration	
3.2.	Building a SWATmeasR project	
3.2.1	General SWATmeasR workflow	
3.2.2	. Initialising a new SWATmeasR project	
3.2.3	. General structure of a SWATmeasR project	
3.2.4	NSWRM definition	
3.2.5	. Definition of NSWRM locations	
3.2.6	NSWRM implementation	
4. Run	ning the optimisation	
4.1.	python installation	
4.1.1.	miniconda installation	
4.1.2	miniconda setup	
4.2.	CoMOLA file structure	
4.3.	Setting up and starting an optimisation run	
4.3.1	Add your own txt folder	
4.3.2	. Adjust the SWAT.R script	
4.3.3	. Configure the master file (<i>config.ini</i>)	
4.3.4	Starting the optimisation (<i>run_comola.bat</i>)	
4.4.	Analysis of results	
5. Refe	rences	

Modeling challenge #6

Optimize the allocation of NSWRMs for multiple objectives!

Pareto optimality

Pareto optimality or Pareto efficiency is a situation where no action or allocation is available that makes one objective better off without making another worse off

Pareto optimality

Concept applied to landscape research...

Pareto Frontier

⇒ Aim: Find Pareto-optimal land use / land cover configurations in a landscape for predefined objectives (e.g. agricultural production, water quality, biodiversity, ...)

Status quo land use
Land use change scenario

OPTAIN

Objective

 $\overline{}$

Objective 2

Pareto optimality – Why is it useful for decision making?

Pareto-optimal solutions indicate the potential of a landscape to fulfill different objectives

⇒ Best possible (minimal) trade-offs among conflicting objectives become visible

OPTAIN

Objective 2

- Stakeholders from different sectors usually have different preferences for different objectives
- \Rightarrow Stakeholders can discuss and try to find the best possible compromise solution
- \Rightarrow Results can support planning processes across sectors

Pareto optimality

The challenge of visualizing multi-dimensionality ...

- With >2 objectives the Pareto frontier is not a line anymore but an n-dimensional cloud
- The more dimensions, the more difficult is the search for and visualization of Pareto-optimal solutions

Key research questions in WP5

- Where to implement which measure(s) within a case study to best possible fulfill various environmental and socioeconomic objectives?
 identify Pareto-optimal solutions!
- How to post-process, i.e. analyse, visualise, filter and navigate through the set of Pareto-optimal solutions?
- Which solutions are preferred by stakeholders?

COMOLA – The tool linking the things to optimize land use allocation

CoMOLA

Encoding a land use map as genome

Genome: String of numbers representing a state (1 = scenario off, 2 = scenario on). Each position in the string refers to a specific measure at a certain location (= NSWRM_id for the SWATmeasR)

13 14 15 16 17 18 19

All measures inactive (= status quo)

b1

p1 p2 p3

q1

🔮 OPTAIN

p = pond

- g = grassed waterway
- n = hedge
- b = riparian buffer
- t = minimum tillage

CoMOLA

Crossover and mutation

Parent individuals

1 2

2 2

Offspring individuals after crossover

 1
 2
 1
 1
 2
 1
 2
 1
 1
 2
 1
 1
 2
 1
 2
 2
 1
 2
 1
 1
 1
 1
 2
 1
 2
 1
 2
 1
 1
 1
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 1

Offspring individuals after mutation

1 2 1 1 1 2 1 2 1 2 2 2 1 1 1 1 1 1 2 1 2 2 1 2

CoMOLA_SWATplus on GitHub

ļ,

\rightarrow G	◯ A == https://github.c	om/michstrauch/CoMOLA_SWATplus/tree/main	120% 🖒 🥰 Տւ	uchen
	Product ~ Solutions ~ Resource	es 🗸 Open Source 🗸 Enterprise 🗸 Pricing	Q Search o	or jui
⊒ micł	nstrauch / CoMOLA_SWATpl	US Public		
<> Code	e 💽 Issues 🏦 Pull requests 🤇	🕑 Actions 🗄 Projects 🛈 Security 🗠 Insigh	ts	
	<mark>양 main → 양 1</mark> Branch ⓒ 0 Tag	s Q	Go to file	•
	left michstrauch Merge branch 'main	of git.ufz.de:optain/wp5-optimisation/comola	a1841ff · 1 minute ago 🛛 🕚 36 Commit	s
	🖿 input	Initial commit	3 months ag	0
	inspyred	Initial commit	3 months ag	0
	models/SWAT	added economic model	12 minutes ag	0
	output_analysis	updates in post-processing file	8 minutes ag	0
	🗋 .gitignore	Initial commit	3 months ag	0
	Python_installation.docx	added python installation guide	3 months ag	0
	Linitpy	Initial commit	3 months ag	0
	🗋 config.ini	Initial commit	3 months ag	0
	Config.py	Initial commit	3 months ag	0

https://github.com/michstrauch/CoMOLA_SWATplus/comola

Highly recommended reading:

Strauch & Schürz (2024) https://zenodo.org/records/11473793

Optimal Strategies to Retain Water and Nutrients

D5.1: Common optimisation protocol

Authors: Michael Strauch (UFZ), Christoph Schürz (UFZ)

Delivery Date: 31. May 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 862756.

Table of Contents

Sum	mary.		5
Abbr	eviatio	on list	7
1. li	ntrodu	uction	8
1.1.	Ob	jective	8
2. 0		N's optimisation concept	9
2.1.	De	finition of optimisation objectives	10
2.2	. De	finition of the decision space	11
2.3	. Fu	nctions evaluating the objectives	11
2.4	. Mu	Ilti-objective optimisation algorithm	12
3. S	SWAT+	model preparation	14
3.1.	Ba	sic SWAT+ model configuration	14
3.2	. Bu	ilding a SWATmeasR project	15
3	3.2.1.	General SWATmeasR workflow	15
3	5.2.2.	Initialising a new SWATmeasR project	17
3	5.2.3.	General structure of a SWATmeasR project	
3	5.2.4.	NSWRM definition	
3	5.2.5.	Definition of NSWRM locations	
3	3.2.6.	NSWRM implementation	
4. F	Runnir	ng the optimisation	
4.1.	py	thon installation	
4	4.1.1.	miniconda installation	
4	4. 1 .2.	miniconda setup	
4.2	. Co	MOLA file structure	
4.3	. Set	tting up and starting an optimisation run	
4	4.3.1.	Add your own txt folder	
4	+.3.2.	Adjust the SWAT.R script	
4	4.3.3.	Configure the master file (<i>config.ini</i>)	
4	4.3.4.	Starting the optimisation (run_comola.bat)	
4.4	. An	alysis of results	
5. F	Refere	nces	

OPTAIN

58900 \bigcirc 59100

58700

Lowflow [fraction of days below threshold]

- 0.0575
- 0.0550
- 0.0525